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How should a spatial-coverage sample design for a geostatistical soil survey
be supplemented to support estimation of spatial covariance parameters?
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A B S T R A C T

We use an expression for the error variance of geostatistical predictions, which includes the effect of uncertainty
in the spatial covariance parameters, to examine the performance of sample designs in which a proportion of the
total number of observations are distributed according to a spatial coverage design, and the remaining ob-
servations are added at supplementary close locations. This expression has been used in previous studies on
numerical optimization of spatial sampling, the objective of this study was to use it to discover simple rules of
thumb for practical geostatistical sampling. Results for a range of sample sizes and contrasting properties of the
underlying random variables show that there is an improvement on adding just a few sample points and close
pairs, and a rather slower increase in the prediction error variance as the proportion of sample points allocated in
this way is increased above 10 to 20% of the total sample size. One may therefore propose a rule of thumb that,
for a fixed sample size, 90% of sample sites are distributed according to a spatial coverage design, and 10% are
then added at short distances from sites in the larger subset to support estimation of spatial covariance para-
meters.

1. Introduction

1.1. The problem and its motivation

How should we sample a variable in space to allow geostatistical
prediction for an information system or mapping project? This is an
important question for the application of geostatistics in soil science,
particularly when limited resources are available to support soil sam-
pling in the field and the analysis of sampled material in the laboratory.
It is important because the sampling determines both the cost of the
survey and the quality of the resulting predictions.

One of the first approaches to this question was made by McBratney
et al. (1981) who showed that if the spatial covariance parameters
(variogram parameters) of the target random variable are known, at
least approximately or from a homologous setting, then one may
identify the spacing of a square sample grid such that the kriging var-
iance at the centre of a grid cell (where the point kriging variance takes
its largest value) does not exceed some threshold. van Groenigen et al.
(1999) demonstrated that spatial simulated annealing, a method for
numerical optimization, can be used to find sampling designs in irre-
gularly-shaped regions so as to minimize the mean or maximum kriging
variance over that region. This approach will tend to produce a ‘space-

filling’ or ‘spatial-coverage’ design, which can also be achieved by the
methods of Walvoort et al. (2010).

The limitation of spatial-coverage designs for geostatistics, be these
regular grids or space-filling designs in irregular regions, is that they do
not provide information on spatial dependence over short intervals, and
so the modelled spatial covariance at short lag distances is poorly
constrained. The covariance at short distances is particularly influential
on the kriging weights. While some early geostatistical studies in soil
science used regular sampling grids (e.g. Burgess and Webster, 1980,
Webster and Oliver, 1989) it was realized that it is necessary to include
some observations within a sample array that are a short distance apart
to support the estimation of spatial covariance parameters (e.g. Atteia
et al., 1994; Cattle et al., 2002). However, we are not aware of an ex-
plicit analysis of the benefits of doing this in terms of the quality of final
kriging predictions. Stein (1999), in a simple 1-D simulation with only
20 sample locations on a regular transect, showed that the likelihood
function for spatial covariance parameters was very flat near the
maximum, but that adding just three additional observations at finer
intervals within the transect markedly reduced the uncertainty. In 2-D
simulations with more realistic sample sizes Haskard (2007) supported
this finding. She considered a total sample size of 100, but allocated
either 10 or 20 of these points to clusters within an incomplete 10×10
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square grid. She found a marked reduction in the standard errors of
spatial covariance parameters when using the sample array with 10
points in a cluster by comparison to the full 10×10 grid, and only a
small additional benefit in using 20 of the 100 points in clusters.

Simple spatial-coverage sampling will not do to support geostatis-
tical prediction, so how can appropriate designs be discovered? Zhu and
Stein (2006) and Marchant and Lark (2007a,b) showed how to define
an overall objective function for the quality of a sampling design, an
expected mean square error of predictions, which accounts for the two
sources of uncertainty in the empirical best-linear unbiased prediction
(E-BLUP, equivalent to the kriging prediction in the general case with
no covariates and the local mean assumed to be stationary). These two
sources are the spatial variation of the target variable and the un-
certainty in the maximum likelihood (ML) estimates of the spatial
covariance parameters. More detail is provided in Section 1.2. The key
point is that we do not assume that the spatial covariance parameters
are known without error, but account for their uncertainty, which de-
pends in part on the sampling design. Spatial simulated annealing can
then be used to minimize the mean value, or the maximum value, of
this objective function across a study area. The resulting designs re-
semble a spatial-coverage sample with some additional points at shorter
distances.

These formal methods for optimization may be complex to imple-
ment. They require an approximation of the spatial covariance para-
meters of the target variable, or a specification of their joint prior dis-
tribution. In practice the scientist who is planning a survey may have a
more-or-less fixed sample size to deploy, and simple rules of thumb may
be more useful than complex procedures for optimization, which may
also be computationally demanding. There are various rules of thumb
in geostatistics which have been influential amongst practitioners. For
example, it is generally advised to form empirical estimates of the
variogram for lag distances no longer than D/2 where D is the max-
imum distance between observations (Journel and Huijbregts, 1978).
Webster and Oliver (1992) suggest that at least 100 observations are
required to obtain a reliable estimate of the variogram. Kerry et al.
(2010) advise that a sampling grid for geostatistical prediction should

have a spacing no coarser than half the range of spatial dependence of
the target variable, and ideally one third to two fifths of the range.

The objective of this paper is to see whether it is possible to devise
rules of thumb to plan a geostatistical soil survey de novo. Following the
observations of Stein (1999) and Haskard (2007), and from the simu-
lation results of Zhu and Stein (2006) and Marchant and Lark
(2007a,b)), we propose that the rule for a geostatistical survey with N
observations is to withhold some number of these (a short-distance
subset), distribute the remaining NSC according to a spatial-coverage
design and then to insert each observation from the short-distance
subset into the resulting regular array at some fixed short distance, but
in a random direction, from a randomly selected site in the spatial-
coverage subset. We examine a quality measure for the resulting sur-
veys, the mean square error of prediction as computed by Marchant and
Lark (2007a) which accounts both for the density of sampling around a
prediction site and the uncertainty of the spatial variance parameters.
The key question is whether a general recommendation can be made as
to how many sample sites to reserve for the short-distance subset. Our
study is therefore one in the spirit of ‘innovization’ (innovation by
optimization), as discussed by Deb et al. (2014). The key idea of in-
novization is that one seeks to discover rules which a practitioner can
implement which capture the key properties of solutions identified by
formal optimization.

In the next section we review the calculation of the prediction error
variance of the E-BLUP as proposed by Zhu and Stein (2006) and
Marchant and Lark (2007a). Section 2 then sets out the sampling
schemes and scenarios for which we evaluated this error variance. The
scenarios correspond to random variables with a range of spatial cov-
ariance parameters. These include parameter sets selected from a
Markov Chain Monte Carlo sample of parameters for the random effects
in a linear mixed model for the variation of soil carbon content across a
part of eastern lowland England with a range of contrasting land uses.

1.2. The mean-square error of the empirical best linear unbiased prediction

In this paper we consider the case of ordinary kriging, although the
formulation of the problem extends to the more general best-linear
unbiased prediction (BLUP) which includes universal kriging (or re-
gression kriging in an approximately equivalent presentation). The or-
dinary kriging prediction of a variable, Z at a location x0, given q
covariance parameters in θ and n observations in z=(z (x1), z (x2),…,z
(xn)) T can be written as

=θ λZ x z( | ) ,0
T (1)

where λ is a vector of weights. The weights are obtained from the or-
dinary kriging equation
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the matrix C is the covariance matrix of the n observations given their
locations, x1,x2,…xn and the covariance function with parameters in θ,
C (xi −xj|θ); 1n is a vector length n of ones,
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where ψ is a Lagrange multiplier. If c is a vector of the covariances
between the target location x0 and the observations, x1,x2,…xn, then
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In this formulation the expected square error of the prediction, the

Fig. 1. Mean distance to nearest neighbour within a set of NSC points in a spatial cov-
erage sample in a 256×256-unit square region.
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