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A B S T R A C T

Soil organic carbon (SOC) estimation is crucial to manage natural and anthropic ecosystems. Many modeling
procedures have been tested in the literature, however, most of them do not provide information on predictors'
behavior at specific sub-domains of the SOC stock. Here, we implement Quantile Regression (QR) to spatially
predict the SOC stock and gain insight on the role of predictors (topographic and remotely sensed) at varying
SOC stock (0–30cm depth) in the agricultural areas of an extremely variable semi-arid region (Sicily, Italy, around
25,000km2). QR produces robust performances (maximum quantile loss = 0.49) and allows to recognize domi-
nant effects among the predictors at varying quantiles. In particular, clay mostly contributes to maintain SOC
stock at lower quantiles whereas rainfall and temperature influences are constantly positive and negative, re-
spectively. This information, currently lacking, confirms that QR can discern predictor influences on SOC stock
at specific SOC sub-domains. The QR map generated at the median shows a Mean Absolute Error of 17 t SOC ha- 1

with respect to the data collected at sampling locations. Such MAE is lower than those of the Joint Research
Centre at Global (18 t SOC ha- 1) and at European (24 t SOC ha- 1) scales and of the International Soil Reference
and Information Centre (23 t SOC ha- 1) while higher than the MAE reached in Schillaci et al. (2017b) (Geo-
derma, 2017, issue 286, page 35–45) using the same dataset (15 t SOC ha- 1). The results suggest the use of QR as
a comprehensive method to map SOC stock using legacy data in agro-ecosystems and to investigate SOC and
inherited uncertainty with respect to specific subdomains. The R code scripted in this study for QR is included.

1. Introduction

Soil Organic Carbon (SOC) plays a key role in various agricultural
and ecological processes related to soil fertility, carbon cycle and soil-
atmosphere interactions including CO2 sequestration. Thus, its knowl-
edge has a crucial importance both at global and local scales, especially
when aiming at managing natural, anthropic areas and agricultural
lands. In this context, the scientific community has spent considerable
efforts in mapping SOC, its spatiotemporal variation, and in confirming
its primary role in shaping ecosystems functioning (Ajami et al., 2016;
Grinand et al., 2017; Ratnayake et al., 2014; Schillaci et al., 2017a).

Spatio-temporal studies can be found in various geographic contexts
from Africa (Akpa et al., 2016), Asia (Chen et al., 2016), Australia
(Henderson et al., 2005), Europe (Yigini and Panagos, 2016), North-
America (West and Wali, 2002), central America (Ross et al., 2013) to
South-America (Araujo et al., 2016). The variability of the local land-
scape, availability of funding, mean gross income of the population in

the area, and temporal commitment affect the number of samples, their
spatial density and distribution. As a result, experiments have been
conducted on almost regular and dense grids, mostly focusing on small
areas (Lacoste et al., 2014; Taghizadeh-Mehrjardi et al., 2016) and
others using sampling strategies that significantly vary across space
(Mondal et al., 2016). The latter studies mainly correspond to regional
or larger scales (Reijneveld et al., 2009; Sreenivas et al., 2016), with
only few cases having an optimal sample density maintained at a na-
tional level (Mulder et al., 2016). The characteristics of the environ-
ment under study can require the use of different predictors capable of
explaining the variability of soil traits, topography and standing bio-
coenosis, especially (cropped or natural) phytocoenosis, the latter being
efficiently explained by remotely sensed (RS) properties (Morellos
et al., 2016; Peng et al., 2015).

Modeling procedures for SOC primarily aim at constructing present,
past or predictive maps, and at studying the role of each predictor over
the target variable. Regarding the latter, the estimation of predictor
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contributions on a target variable such as SOC, is of particular interest
to efficiently obtain agro-environmental and social benefits (e.g.
Viscarra Rossel and Bouma, 2016).

Statistical applications provide quantitative ways to deal with such
research questions. The current literature encompasses algorithms that
can be clustered into interpolative and predictive. Pure interpolators
are broadly used when the density of the samples is sufficient to reg-
ularly describe the variation of SOC across a given area. Examples with
excellent prediction performances are reported in Hoffmann et al.
(2014), Piccini et al. (2014). The weakness of these approaches be-
comes evident when using datasets with non-regular distribution in
space (Dai et al., 2014; Miller et al., 2016). Conversely, regression-
based predictive models hardly suffer from the spatial sampling scheme
as they do not rely on the distribution across the geographic space in
order to derive functional relations between SOC and independent
variables (Hobley et al., 2016).

Among these, linear regression models are a well-established tool
for estimating how, on average, certain environmental properties affect

SOC and SOC stock (Rodríguez-Lado and Martínez-Cortizas, 2015).
However, they are bounded by definition to model the conditional
mean, thus being unable to explore the effects of the same properties at
different C contents or stock of the soil, especially near the tails of the
distribution.

In the present work, Quantile Regression (hereafter QR, Koenker
(2005)) is used to model SOC stock from a non-homogenously sampled
topsoil SOC dataset using soil texture, land use, topographic and re-
motely sensed covariates. In particular, QR is able to model the re-
lationship between a set of covariates and specific percentiles of SOC
stock. In classical regression approaches, the regression coefficients
(also often called beta coefficients) represent the mean increase in the
response variable produced by one unit increase in the associated
covariates. Conversely, the beta coefficients obtained from QR re-
present the change in a specific quantile of the response variable pro-
duced by a one unit increase in the associated covariates. In this way,
QR allows one to study how certain covariates affect median (quantile
τ=0.5) or extremely low (e.g., τ=0.05) or high (e.g., τ=0.95) SOC
stock values. Therefore, it gives a more comprehensive description of
the effect of predictors on the whole SOC stock probability distribution
(i.e., not just the mean) and may be used to analyze differential SOC
stock responses to environmental factors.

Furthermore, when used for mapping purposes, QR allows for soil
mapping at given quantiles, providing analogous estimates to more
common approaches by using the median instead of the mean. A flex-
ible non-parametric extension of linear QR, known as Quantile
Regression Forest (QRF), was used in Malone et al. (2017) to derive
conditional quantiles used to perform an efficient spatial downscaling.

In the present experiment we use a nested strategy to model SOC
stock in Sicilian agricultural areas with QR: we initially aim at testing
the QR overall performances when modeling the SOC stock by seg-
menting its distribution into 19 quantiles (τ=0.05 to τ=0.95).
Subsequently, we examine the coefficients of each predictor for each of
the quantiles. Ultimately, we compare the median prediction with
available SOC benchmarks for the same study area to test the efficiency
of QR for soil mapping purposes. The dataset used in this contribution is
the same used in Schillaci et al. (2017b) where a Stochastic Gradient
Treeboost is adopted.
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Fig. 1. SOC stock dataset and geographic contextualization.

Fig. 2. Leave-one-out performance evaluation using the quantile loss.
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