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A B S T R A C T

The effects of aggregating soil data (DAE) by areal majority of soil mapping units was explored for regional
simulations with the soil-vegetation model CoupModel for a region in Germany (North Rhine-Westphalia). DAE
were analysed for wheat yield, drainage, soil carbon mineralisation and nitrogen leaching below the root zone.
DAE were higher for soil C mineralization and N leaching than for yield and drainage and were strongly related
to the presence of specific soils within the study region. These soil types were associated to extreme simulated
output variables compared to the mean variable in the region. The spatial aggregation of these key functional
soils within sub-regions additionally influenced the DAE. A spatial analysis of their spatial pattern (i.e. their
presence/absence, coverage and aggregation) can help in defining the appropriate grid resolution that would
minimize the error caused by aggregating soil input data in regional simulations.

1. Introduction

Modelling agricultural production and adaptation to the environ-
ment at regional or global scales is receiving much interest in the
context of a growing food demand (Tilman et al., 2011) and climate
change (Ewert et al., 2015). Two important issues are to identify areas
with high yield potential (van Wart et al., 2013) and sustainable
management practices that would minimize environmental impacts
(e.g. soil degradation, GHGs emissions, nutrient leaching). Process-
based soil-crop models describe the flows of mass and energy in the soil-
plant-atmosphere system and have been applied and tested in many
different contexts, e.g. for CoupModel (Jansson, 2012), STICS
(Coucheney et al., 2015), APSIM (Zhang et al., 2012), DNDC (Giltrap
et al., 2010), DANUBIA (Lenz-Wiedemann et al., 2010) or CERES,
WOFOST, CropSyst, WARM, and SWAP (Confalonieri et al., 2009). As
such, they represent valuable tools for predicting agricultural produc-
tion in diverse agro-environmental contexts (e.g. Jeuffroy et al., 2014)
as well as for assessing impacts on the environment; e.g. leaching of
nitrates (Conrad and Fohrer, 2009a), changes in soil carbon (Gervois
et al., 2008) and GHGs emissions (De Gryze et al., 2011). They are also
used to make predictions in response to climate change (e.g. Tubiello

et al., 2000) and management changes (e.g. Ng et al., 2000) at the small
plot or field scales where input data are considered to be spatially
homogeneous. In this context, they are also increasingly applied at
regional (e.g. Gaiser et al., 2009) and global scales (Rosenzweig et al.,
2014). This raises new challenges related to model input data, cali-
bration and evaluation and the use of different methods of upscaling
and downscaling adds new sources of modelling uncertainties (Ewert
et al., 2011).

In regional-scale modelling, one major concern is the need to take
into account the spatial variability of the environmental conditions (e.g.
climate, soils, management practices) used as model inputs. Previous
studies showed the effects of input data quantity and quality on model
predictions (Grassini et al., 2015) or evaluated model predictions when
applied in diverse agro-environmental conditions (Balkovič et al., 2013;
Coucheney et al., 2015). Other recent studies have assessed the errors
caused by upscaling methods for a range of agro-environmental con-
texts and models (Hoffmann et al., 2016a; Kuhnert et al., 2016; Van
Bussel et al., 2011; Zhao et al., 2015a). These studies are a step further
towards the identification and development of scaling methods that
minimize these errors for particular climate, soil and management
conditions.
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Ewert et al. (2011) present different scaling methods from which
two main groups can be distinguished: those based on aggregating
model outputs (Zhao et al., 2016) and those based on aggregating in-
puts. In the latter case, the model is usually run for equal-sized grid cells
covering the region at a pre-defined resolution (Angulo et al., 2013,
2014; de Wit et al., 2005; Folberth et al., 2012; Hoffmann et al., 2015;
Hoffmann et al., 2016a, 2016b; Jégo et al., 2015; Kuhnert et al., 2016;
Zhao et al., 2015a). The challenge is then to generate input data for
each grid cell (see Zhao et al., 2015b) from data sources available at
finer (‘upscaling’) or coarser (‘downscaling’) resolutions and which re-
sult in the smallest errors in comparison to simulations carried out for
each single cell of the grid. Studies of this type have focused mainly on
the effects of upscaling climate and soil input data on the predictions
for a range of models.

While uncertainties in radiation and precipitation are recognised as a
major source of uncertainty for crop yield prediction, de Wit et al. (2005)
concluded that average unbiased estimates of weather data are sufficient
for predicting yield at the regional scale. Similarly, Angulo et al. (2013,
2014) found that aggregating climate and soil input data from 10 to
100 km had a small effect on barley yields in the south of Finland si-
mulated with four different crop models. Limited data aggregation effects
were also obtained when aggregating climate input for simulations of
yield and net primary productivity of wheat and maize under water-
limited conditions in western Germany using several crop models
(Hoffmann et al., 2015; Kuhnert et al., 2016; Zhao et al., 2015a). The
DAE related to soil input data were larger in the same region (Hoffmann
et al., 2016a). Olesen et al. (2000) and Jégo et al. (2015) found that fine
resolution data for both precipitation and soil properties was important
for predictions of representative wheat and maize yields in Denmark and
southern Quebec respectively. In the latter region, one reason for this
was a high pedo-diversity and a strong spatial correlation between soil
type and the rainfall data used in the model simulations. DAE are
therefore highly dependent on the region. The small effect of weather
data aggregation in the German study regions might be due to limited
spatial variation in climate combined with a moderate response of
modelled yield to those variations (Angulo et al., 2013; Zhao et al.,
2015a). Zhao et al. (2015a) further showed that the DAE due to climate
aggregation differed among output variables, being positively correlated
with the spatial heterogeneity (variation) of the variables concerned.
Zhao et al. (2015b) concluded that a high spatial resolution of climate
data is desired for regions with high environmental heterogeneity. In line
with this, Kuhnert et al. (2016) found a higher impact of climate ag-
gregation on simulated NPP for single years when extreme events such as
drought occurred, because model outputs varied spatially more in these
years compared with long-term average values. In addition, Hoffmann
et al. (2015) showed that the DAE differed among models and identified
the climate variables that had the most influence. This study highlighted
the importance of also considering the sensitivity of model outputs to the
input data (e.g. Hoffmann et al., 2016a). The question arises as to
whether the DAE for a specific model and given output variables can be
predicted given the spatial distribution of input data and the model
sensitivity to the input. For example, variation in altitude was found to
be a good proxy of climate DAE for the LINTUL-SIMPLACE model ap-
plied in Germany (Zhao et al., 2015b).

Soil properties such as texture, bulk density, porosity and organic
matter content strongly influence the soil hydraulic properties (Schaap
and Leij, 1998) and biogeochemical processes (Riffaldi et al., 1996).
These impact crop growth and its sensitivity to climate under limiting
water and nutrient conditions significantly (Kravchenko and Bullock,
2000). Soil variability is therefore one of the most important factors
underlying spatial variability in crop yields (Wassenaar et al., 1999).
Soil data aggregation may also have a strong impact on simulations of
other variables apart from crop yield, such as soil organic carbon stocks
(Zhang et al., 2014) or water and N dynamics (Kersebaum and Wenkel,
1998). Furthermore, the importance of soil properties for yield pre-
dictions depends not only on the climate (e.g. Timlin et al., 1998) but

also on management practices such as fertilization. For example,
Folberth et al. (2016) showed that the variability in yield related to soil
type may exceed weather-related variability in scenarios characterized
by low fertilization and irrigation amounts. DAE may therefore be
larger in regions with a high pedodiversity (i.e. high spatial variation in
soil types; Jégo et al., 2015) and in climates or under certain man-
agement practices that lead to high water and nitrogen stress.

The present study explores soil DAE on simulated yields of winter
wheat, drainage, N leaching and C mineralisation in the region of North
Rhine-Westphalia (NRW) in western Germany (Hoffmann et al.,
2016a). Simulations were run with a process oriented soil-vegetation
model (the CoupModel; Jansson, 2012) for gridded soil data and a
spatially uniform climate to ensure that the spatial variability in out-
puts is related only to variation in soil properties. The soil data was
aggregated by selecting the dominant soil at each coarser resolution
(i.e. the soil mapping unit covering the areal majority is selected at each
coarser scale). The objective of this study was to investigate the con-
tribution of specific soils and their spatial distribution to the DAE for
the selected model outputs. We hypothesize that specific combinations
of soil properties (‘key soils’) generate extreme model outputs and that
the spatial distribution (e.g. coverage, spatial aggregation) of these
critical soils within the region strongly influences the spatial variation
of the model outputs and therefore the DAE. To test this hypothesis we
propose and apply an approximation of the DAE as a function of these
key soils and their spatial coverage in the region. In addition, the in-
fluence of the degree of spatial aggregation of these key soils within an
area was investigated with respect to four sub-areas of NRW.

2. Material and methods

2.1. Study area

The study area, the state of North Rhine-Westphalia (NRW, 6 E–9.5
E, 50 N–52.5 N, Fig. 1), is located in west-central Germany with a
temperate humid climate. Half of the region (34,098 km2) is covered by
flat plains and the topography rises from the northeast towards the
southeast with a maximal elevation of 843 m. Agricultural land re-
presents> 60% of the area, with winter wheat and silage maize as the
main crops.

The whole climate and soil data used in the study can be obtained
from Hoffmann et al. (2016b), a brief description is given below.

2.1.1. Climate data
Gridded 1 km × 1 km daily weather data on maximum, minimum

and mean temperature, daily rainfall, solar radiation and wind speed
over the 29-year period from 1982 to 2011 were obtained by combining
daily data from> 200 local weather stations with gridded (1 km)
monthly data from the German Meteorological Service (DWD, 2014; see
Siebert and Ewert, 2012; Zhao et al., 2015a for precise descriptions).
The regional average annual temperature was 9.1 °C and mean annual
precipitation was 802 mm with a spatial coefficient of variation of 9.3%
and 18% respectively.

2.1.2. Soil data
Gridded 300 m× 300 m soil data (texture, soil layers, depth, C

content) were obtained by aggregating mapping units by areal majority
using a soil map at a scale of 1:50,000 obtained from the Geological
Service North-Rhine Westphalia (Geological Service NRW, 2004), see
Angulo et al. (2014) for a more detailed description. The soil data were
complemented by soil physical parameters (e.g. water holding capacity)
estimated from the texture class by applying pedo-transfer functions
developed for German soils (Eckelmann et al., 2005). Topsoil organic
carbon and pH were taken from the database FIS StoBo (LANUV, 2014),
while the organic carbon content and C:N-ratio of subsoil layers was
approximated using pedotransfer functions (Angulo et al., 2014;
Eckelmann et al., 2005). Each soil is characterized by a unique set of
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