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A B S T R A C T

One of the first soil forming processes in marine and fluviatile clay soils is ripening, the irreversible change of
physical and chemical soil properties, especially consistency, under influence of air. We used Bayesian binomial
logistic regression (BBLR) to update the map showing unripened subsoils for a reclamation area in the west of
The Netherlands. Similar to conventional binomial logistic regression (BLR), in BBLR the binary target variable
(the subsoil is ripened or unripened) is modelled by a Bernoulli distribution. The logit transform of the `prob-
ability of success' parameter of the Bernoulli distribution was modelled as a linear combination of the covariates
soil type, freeboard (the desired water level in the ditches, compared to surface level) and mean lowest
groundwater table. To capture all available information, Bayesian statistics combines legacy data summarized in
a ‘prior’ probability distribution for the regression coefficients with actual observations. Our research focused on
quantifying the influence of priors with different information levels, in combination with different sample sizes,
on the resulting parameters and maps. We combined subsamples of different size (ranging from 5% to 50% of the
original dataset of 676 observations) with priors representing different levels of trust in legacy data and in-
vestigated the effect of sample size and prior distribution on map accuracy. The resulting posterior parameter
distributions, calculated by Markov chain Monte Carlo simulation, vary in centrality as well as in dispersion,
especially for the smaller datasets. More informative priors decreased dispersion and pushed posterior central
values towards prior central values. Interestingly, the resulting probability maps were almost similar. However,
the associated uncertainty maps were different: a more informative prior decreased prediction uncertainty.
When using the ‘overall accuracy’ validation metric, we found an optimal value for the prior information level,
indicating that the standard deviation of the legacy data regression parameters should be multiplied by 10. This
effect is only detectable for smaller datasets. The Area Under Curve validation statistic did not provide a
meaningful optimal multiplier for the standard deviation. Bayesian binomial logistic regression proved to be a
flexible mapping tool but the accuracy gain compared to conventional logistic regression was marginal and may
not outweigh the extra modelling and computing effort.

1. Introduction

One of the first soil forming processes in marine and fluviatile clay
soils is ripening, which is the irreversible change of physical and che-
mical soil properties, such as consistency, under influence of air. The
ripening stage is an important factor in determining land use suitability.
Moreover, it is also an indicator for forecasting soil shrinkage (Pons and
Zonneveld, 1965). In the central western part of The Netherlands, clay

soils have been waterlogged almost since deposition, and part of these
soils are thus still ripening. The ripening process is ongoing, and as a
result the current maps, created between 1960 and 1995, are getting
outdated. These maps must be updated to accurately represent the
current situation.

Soil ripening is mapped as a binary property, i.e. on each location,
the soil is considered either ‘ripened’ or ‘unripened’. It is unripened if
any part of the profile (0–80 cm) contains unripened clay. If point
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observations of soil ripening and maps of covariates related to soil ri-
pening are available, a map of the probability of a ripened subsoil can
be obtained by binomial logistic regression (BLR). In BLR, the logit
transform of the ‘probability of success’ parameter of the Bernoulli
distribution which represents in our case the probability that the soil is
ripened, is modelled as a linear combination of covariates. With more
than two classes the data follow a multinomial distribution and a si-
milar approach, multinomial logistic regression (MLR), can be applied
to map class probabilities. Kempen et al. (2009) and Vasques et al.
(2014) applied MLR to map probabilities of multiple soil classes.
Collard et al. (2014) compared MLR with classification trees and
random forests. They found that MLR performed remarkably well for
predicting soil classes. In contrast, Heung et al. (2016) showed MLR to
perform worse for predicting soil classes in a comparison of ten ma-
chine learning approaches (e.g. logistic model trees, artificial neural
networks).

BLR and MLR only use the observations of the variable of interest at
the sampling points and the maps of the covariates. Models might better
reflect reality and give more accurate predictions if we were able to
exploit all available information in the model calibration process,
especially in situations with scarce data. In particular, we may think of
‘prior’ knowledge about the regression coefficients of the BLR (MLR)
model, which is not used in BLR (MLR) calibration. Bayesian statistics is
equipped to capture all available knowledge by combining multiple
information streams, i.e. information summarized in a ‘prior’ prob-
ability distribution of the model parameters, and information contained
in the actual observations. For instance, Stanaway et al. (2011) used
knowledge of plant properties and observation accuracy in Bayesian
mapping of the risk of invasive plant species in Australia. Frigessi and
Stander (1994) used deterministic terrain data to support Bayesian
classification of satellite spectral images. Truong et al. (2014) used
expert guesses of point-support variogram parameters to support
Bayesian area-to-point kriging for remotely sensed air temperature.

To our best knowledge, Bayesian logistic regression has not yet been
used to create soil property maps. In this research, we extensively ex-
plain, and apply, Bayesian binomial logistic regression (BBLR) for
mapping clay soil ripening probability. In particular, we assess the
added value of incorporating prior information derived from case-re-
lated legacy data. We investigate the added value of prior information
with different degrees of information level in combination with dif-
ferent sample sizes of recent soil ripening data. Furthermore, this work
includes a brief explanation of Bayesian generalized regression, the
Metropolis algorithm and the validation statistics ‘overall accuracy’ and
‘area under curve’, with the purpose to familiarize soil scientists with
these concepts.

2. Theory

2.1. The binomial logistic regression (BLR) model

Binary responses on discrete or continuous covariates can be mod-
elled with the binomial logistic regression (BLR) model, which is an
instance of the Generalized Linear Models family.

Let yi, i= 1…n be observations of a binary target variable, where
each yi equals 1 or 0 and n is the number of sampling locations. In BLR,
the data are modelled as independent draws from a Bernoulli prob-
ability distribution:

y π~Bernoulli ( )i i (1)

with πi the ‘probability of success’ parameter at the i-th sampling lo-
cation. The logit transform of πi is modelled by a linear combination of
covariates:
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where di is an (m+ 1) vector, the first element of which equals 1 and
the remaining elements of which contain the values of m covariates at
the i-th sampling location, and β is a vector of regression coefficients,
including an intercept term. The inverse logit is written as:
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For all locations together, Eq. (2) can be written as Eq. (4) with π a
column vector of π1, …, πn and D the design matrix, which contains the
m covariates at the n sampling locations, including a column of leading
ones:

=π Dβlogit( ) (4)

Having described π as a function of a vector of regression para-
meters β, we obtain an estimate of β that fits the data best, and use this
calibrated BLR model for estimating the probability of a ripened subsoil
at new locations. Note that we assume that the regression residuals are
independent. In other words, we assume that the spatial structure in
parameter π is fully captured by the covariates.

2.1.1. Estimation of regression parameters using maximum likelihood
Likelihood is a central concept in statistical model calibration, se-

lection and comparison. In the scope of this paper, the likelihoodL β( )
equals the probability of the observations y as a function of the re-
gression coefficients vector β, given in Eq. (5) (Collet, 1991):
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Note that parameter πi is a function of β as given in Eq. (3). Note
also that p(y|β) is a proper probability distribution when considered a
function of y, i.e. it integrates to one over all possible values for y, but it
is a likelihood when considered a function of β.

We calibrate a given model structure, i.e. a model with a given
combination of covariates, on the data by finding the estimate β for β
that maximizes the likelihood. Analytical solutions are not always
available and numerical, iterative search algorithms are used instead
(Collet, 1991). The uncertainty in β is expressed by its variance-cov-
ariance matrix:

 = −β D V Dvar( ) ( )T 1 (6)

with  ̂ ̂ ̂= …V diag σ σ σ( , , , )n1
2

2
2 2 , where  ̂ = −σ π π(1 )i i i

2 and πi the estimate
for πi resulting from plugging in β in Eq. (4). The diagonal of var β( )
contains the squared standard errors, i.e. the modelling variance of β .

2.1.2. Estimation of probability of ripened subsoil at new locations
Point estimates for the model parameter π at a new location can be

obtained by substituting β for β and d0 for D in Eq. (3), with d0 the
covariate values at the new location. The modelling uncertainty in π at
a new location as result of uncertainty in β can be investigated by the
Monte Carlo method: simulate a large number of independent vectors
with regression coefficients (using β , var β( ) and a pseudo-random
number generator, while assuming β has a multivariate normal dis-
tribution and accounting for correlation of the different regression
coefficients) and calculate the corresponding π0

(j) using Eq. (4), where
(j) indicates the iteration number, (j) = 1, 2…r of r iterations. The re-
sulting empirical distribution at the new location can be visualised by a
histogram of all simulated π0

(j).

2.1.3. Selecting model structure
The regression model structure, i.e. the combination of covariates,

may be chosen by minimizing the Bayesian Information Criterion (BIC)
(Neath and Cavanaugh, 2012). Model selection criteria such as BIC
favour models that explain the data well – quantified with a high
maximum likelihood – but penalizes for model complexity, expressed as
the number of model parameters m, which equals the number of
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