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A B S T R A C T

Soil information is essential for sustainable management of ecosystems. In many parts of Iran, soil information is
either not available or difficult to obtain. Therefore, when no detailed map or soil information is accessible in a
region of interest, one way to obtain information is to extrapolate information from other parts having soil
information. This study was conducted to determine whether - machine-learning extrapolation method extracted
from the reference region, i.e. Zarand can estimate soil classes in the interest region, i.e. Bam and reduce the
costs of soil mapping. To identify similarities between reference and interest regions, homology of soil forming
factors was determined using Gower's similarity index. Then, the multinomial logistic regression was extracted
from the reference region and applied into the interest region to estimate soil classes. Moreover, soil classes were
predicted in the interest region using direct soil observations; finally, the accuracy of the soil maps obtained from
both methods was assessed. Based on Gower index, the study regions, namely Bam and Zarand, were to some
extent similar in term of soil forming factors. The results showed that although the soil map derived from the
extrapolation process indicated appropriate spatial coverage of soil classes in the interest area, the resultant
predictive map of calibrated-in process was slightly more accurate, i.e. higher κ, lower Brier scores. Acceptable
levels of predictive accuracy (60%) were achieved using extrapolated model while costs simultaneously sig-
nificantly lowered. This study put forward the view that the extrapolation method was quite useful in predicting
soil classes within areas where soil mapping by calibrated-in method might be too costly or time consuming or
where soil observations may not be sufficient. Nevertheless, this research encouraged us to use extrapolated
method to fill the gaps in the present soil map of Iran and to apply it as the base map to increase and improve the
efficiency of digital soil mapping.

1. Introduction

“Soil mapping is a crucial physical environment tool for rational
land planning and environmental management” which relates soil/soil
classes to topographic position in certain landforms, geological units,
vegetation communities, and/or land uses (Cook et al., 1996;
McBratney et al., 2003; Scull et al., 2003). The integration process
between soil forming factors and pedology can be qualitative or com-
puter-based. The qualitative integration process is defined as traditional
soil survey (TSM) and the computer-based integration process is known
as digital soil mapping (DSM) (Brungard et al., 2015; Grinand et al.,
2008; Jafari et al., 2012; McBratney et al., 2003; Scull et al., 2003,
2005; Taghizadeh-Mehrjardi et al., 2014, 2015).

As traditional soil mapping methods are costly and time-consuming,

many scientists have developed and used mathematical methods to
estimate soil properties (Schloeder et al., 2001; Thomas et al., 2000;
Yemefack et al., 2005). McBratney et al. (2003) introduced and de-
veloped the SCORPAN model; several researchers have used geostatis-
tical techniques (Emadi and Baghernejad, 2014; Mousavifard et al.,
2013; Salehi et al., 2013; Wälder et al., 2008), expert systems (Smith
et al., 2012; Van Zijl et al., 2012; Zhu et al., 2001), unsupervised
classification (Boruvka et al., 2008; Triantifilis et al., 2012) or machine-
learning methods (Behrens and Scholten, 2006; Bui and Moran, 2003;
Kim et al., 2012; Lemercier et al., 2012; Stum et al., 2010). The most
important purpose of digital soil mapping is to make a soil map for
regions with no soil information using environmental low-cost vari-
ables. To achieve this objective, the proposed approach involves con-
struction of a model in one place having data and extending it to areas
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lacking information.
It is important that soil classes be surveyed based on the spatial

distribution of the soil-forming factors or in other words, environmental
variables, in both methods (TSM and DSM). Therefore, it can be implied
that the inference model for prediction of soil properties/soil classes
can be similar if similar geomorphology, hydrology and pedology
processes occur or if the spatial distribution of environmental variables
is similar in two areas (Caten et al., 2011; Grinand et al., 2008;
Lagacherie et al., 2001). In the other words, if a model is developed for
an area, this model can be generalized to the other similar areas.
Therefore, extrapolation process can be a useful tool in reducing costs
and time.

From the beginning of soil genesis to evolution, soils are influenced
by environmental factors. Therefore, similarities in environmental
factors in different regions increase the possibility of extrapolation. The
idea of extrapolating environmental variables has previously been ex-
plored mainly to identify areas with similar climates for crop produc-
tion all over the world. Prescott (1938) coined the term “homoclime”,
referring to areas or regions in the world with similar climate. Also,
Mallavan et al. (2010) introduced a methodology called “homosoil”,
which assumes homology of soil forming factors (lithology, climate, and
topography) between a reference area and the region of interest. With
this definition, they presented a methodology for quantitative extra-
polation of soil information between the region of interest and other
reference areas with good coverage of soil data as well as with similar
soil-forming factors. They used Gower similarity index for finding si-
milarity of soil forming factors. The significance of this work and other
similar studies is the limited time, lack of legacy soil information and
finite financial resources to collect new soil samples in many places
around the world. On the other hands, insufficient sampling wastes
time and money because it cannot provide the required level of accu-
racy and precision for successful management (Mueller et al., 2004).

Arid and semi-arid regions cover approximately 36% of Earth's
surface, one of which is Iran. In most of these regions, legacy soil in-
formation either is difficult to obtain or no data exist. In such condi-
tions, we have to extrapolate the extracted model from similar areas.
Mallavan et al. (2010) and Salehi et al. (2013) explained that the rules
and models extracted from the reference area could be applied in the
interest region. Therefore, our objectives in this study were i) to com-
pare two survey areas in terms of soil forming factors using similarity
index, ii) to assess the extrapolation of digital soil mapping model de-
rived from reference region, i.e. Zarand district, to estimate soil classes
in the interest region, i.e. Bam region, and iii) to estimate and compare
costs between extrapolation and interpolation processes.

2. Materials and methods

2.1. Description of interest region (Bam)

The study area, an area of 100,000 ha, located in the Bam region,
southeast Iran, about 200 km from the city of Kerman, between 58° 4′
17″ to 58° 28′ 8″ E longitudes and 28° 52′ 51″ to 29° 9′ 29″ N latitudes
(Fig. 1). The area is surrounded by mountains, mostly limestone and
volcanic, from north-west to south-east. The major landforms in the
study area include old and young alluvial fans, bajada, pediment, clay
flat (playa) and hills. Mean annual precipitation and temperature of the
region are 59 mm and 23 °C, respectively. The soil moisture and tem-
perature regimes of the study area are aridic and hyperthermic, re-
spectively (Soil Survey Staff, 2010).

2.2. Description of reference area (Zarand region)

Zarand region, the area studied by Jafari et al. (2012, 2012), is
located between 56° 16′ to 56° 36′ E and 30° 37′ to 30° 53′ N, about
70 km far from Kerman Province, southeast Iran (Fig. 1). It covers an
area of 90,000 ha, surrounded by mountains (limestone, dolomite, and

shale). Major parent materials principally include limestone, dolomite
and shale. Main landforms in the area include alluvial fans, coalescing
alluvial fans (bajada), playa, hills and sand dunes. The soil moisture and
temperate regimes of the Zarand region are similar to those of Bam
(Jafari et al., 2012, 2012). Pistachio is the most important crop in the
study area, which is mostly being grown in the playa. The study area
has an aridic soil moisture regime with mean annual precipitation,
temperature, and potential evapotranspiration of 61 mm, 22 °C and
1750 mm, respectively.

2.3. Ancillary environmental variables derived from the reference and
interest regions

The ancillary variables included terrain attributes, remote sensing
indices and geomorphology map.

i- Relief attributes: These attributes were derived from a Digital
Elevation Model (DEM) at a spatial resolution of 30 m downloaded
from the website (METI and NASA, 2012) and were calculated using
System for Automated Geoscientific Analyses (SAGA GIS) and
ArcGIS (ESRI). The primary and secondary terrain attributes drawn
from DEM included slope, curvature, plan curvature, profile cur-
vature, aspect, stream power index (SPI), total insolation (TI), SAGA
wetness index (SWI), topographic wetness index (TWI), LS factor,
multi-resolution ridge top flatness (MRRTF) and multi-resolution
valley bottom flatness (MRVBF) (Olaya, 2004).

ii- Remote sensing indices: One scene of the Landsat Enhanced
Thematic Mapper (ETM) acquired in 2005 was downloaded (U.S.
Geology Survey, 2005) and used to extract remote sensing indices
including the Normalized Difference Vegetation Index (NDVI;
Boettinger et al., 2008), Ratio Vegetation Index (RVI; Pearson and
Miller, 1972), Perpendicular Vegetation Index (PVI; Richardson and
Wiegand, 1977) and Clay Index (CI; Boettinger et al., 2008).

iii- Geomorphology Map: Air photo interpretation (API) was used to
map geomorphological entities based on their formation processes,
general structure(s) and morphometries. The geomorphological
entities were defined through a nested geomorphic hierarchy de-
fined by Toomanian et al. (2006). During stereoscopic delineation
on landscapes in the study area, we employed our existing knowl-
edge in soil-landscape relationships together with geology, topo-
graphy and geomorphology. Then, interpreted air photos of the
study area were imported into a GIS environment and geomorphic
surfaces were mapped and inserted in GIS via on-screen digitization
following an ortho-photo geo-referencing. 18 and 17 geomorphic
surfaces were identified in Zarand and Bam regions, respectively
(Figs. 2 and 3, Table 1). Sampling was done mostly on the basis of
the geomorphology map in Bam and Zarand regions.

The stratified sampling scheme was adopted for the Bam and Zarand
district using digital maps of geology, geomorphology and topography
for stratification (Figs. 2 and 3). Sampling strata were defined so as to
represent the differences in landform (geomorphology), topography
(DEM) and lithology. Within each stratum, sampling locations were
randomly chosen so that the sample size was proportional to the
stratum area. This resulted in 126 profiles in both areas, which were
then described, sampled, analyzed and classified using the USDA soil
classification system (Soil Survey Staff, 2010).

All environmental variables and geomorphology (geomorphic sur-
faces) were projected to the same reference system (WGS 84 UTM 40 N)
and also the same resolution. The values of the terrain attributes and
levels of geomorphology map were then converted into a table for all
the point locations. Soil great groups for all the locations were also
added to this table which was then imported into R software (R
Development Core Team, 2013) for predictive mapping.
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