
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Spatial variations of soil organic carbon stocks in a coastal hilly area of
China

Shuai Wanga,b, Qianlai Zhuangb,⁎, Shuhai Jiaa, Xinxin Jina,b, Qiubing Wanga,⁎⁎

a College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA

A R T I C L E I N F O

Handling Editor: A.B. McBratney

Keywords:
Soil organic carbon
Geographically weighted regression
Spatial variability

A B S T R A C T

Quantification of soil organic carbon (SOC) stocks and their spatial variations at regional scales is a foundation to
adequately assess plant productivity and soil carbon sequestration potentials so as to establish better practices
for land use and land management. This study evaluated the spatial variation of SOC stocks from 1982 to 2012 in
Wafangdian, Liaoning Province, China. To map SOC stock, we used geographically weighted regression (GWR)
and regression kriging (RK) methods and a large set of soil samples, in which nine topographic and remote
sensing variables were observed. The GWR approach performed better than the RK approach as the former has
smaller absolute mean errors (AME), mean errors (ME), root mean square errors (RMSE) in comparison with
observational data. Our results indicated that SOC stocks have an increasing trend in northeast and southwest
mountainous areas in our study periods. Land-use changes caused by returning cultivation land to forest pro-
moted SOC accumulation. The total SOC stocks of cultivation land, grasslands and forests within 0–0.2 m of soils
were estimated to be 5.25 and 5.40 Tg in 1982 and 2012, respectively. This study provided important in-
formation of spatial variations in SOC stocks to agencies and communities in this region to evaluate soil quality
and assess carbon sequestration potentials and carbon credits.

1. Introduction

Soil has been recognized as a large sink of atmospheric CO2 (Scholes
and Andreae, 2000; Wang et al., 2004). Carbon storage within 1 m of
soil depth is about twice more carbon than stored in the atmosphere
(Watson et al., 2000; Kumar et al., 2012). SOC is a vital constituent in
carbon capture and storage to alleviate rising atmospheric CO2 con-
centrations. Globally, soils stored about 1500 Pg C (1 Pg = 1015 g)
within 1 m depth (Lal, 2004). In addition, estimation of SOC stock is
also important to assessing soil quality and plant productivity under a
changing climate so as to develop effective land management policies
(Jobbagy and Jackson, 2000; Mondini and Sequi, 2008; Don et al.,
2011; Li et al., 2012). Cost-efficient techniques for mapping SOC stock
are therefore indispensable (Mishra et al., 2010; Wang et al., 2016;
Minasny and McBratney, 2016).

Geographic or purely spatial approaches have been used to predict
soil properties at un-sampled locations since the late 1960s (McBratney
et al., 2003). SOC is affected by both natural vegetation and human
activities (Elbasiouny et al., 2014). However, due to spatial hetero-
geneity and lack of extensive sampling data, some approaches are often

not capable of accurately mapping C stocks (Batjes, 1996; Wang et al.,
2016; Wang et al., 2017). Since the advent of geographic information
systems (GIS) and high-precision remote sensing data, climate data,
terrain data and those derived variables have been widely used to es-
timate SOC stock (Kumar et al., 2012). Multiple linear regression
(MLR), regression kriging (RK), and ordinary cokriging (OCK) are often
combined with these auxiliary environmental variables to map soil
properties (Robinson and Metternicht, 2006; Grimm et al., 2008).
Consequently, the selection of prediction variables is one of the ne-
cessary steps to accurately map SOC stocks (Mishra et al., 2010).

Spatial variability of SOC stocks can be estimated by using various
techniques, which can be merged into two categories: (1) the measure
and multiply model (MMA), and (2) the soil landscape modeling (SLM)
model. In the MMA model, an average SOC stock is allocated to each
map unit of soil type or land-use type in an area (Batjes, 1996; Bernoux
et al., 2002; Guo et al., 2006). However, this approach results in con-
stant values within each map unit that cannot show its large spatial
heterogeneity of SOC stock and the error of estimated SOC are due to
using a few SOC stock data points. In contrast, the SLM model can
produce more detailed spatial variations of SOC stocks with assistance
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of auxiliary environmental variables including topography, climate,
vegetation, and remote sensing imagery. Compared with the MMA
model that does not consider the effects of environment variables in the
study area, the SLM model has lower prediction errors (Tompson and
Kolka, 2005; Mishra et al., 2010).

Since the late 1990s, a simple approach known as geographically
weighted regression (GWR) has attracted much attention and was in-
troduced for the study of digital soil mapping (DSM) (Brunsdon et al.,
1996; Fotheringham et al., 2002; Song et al., 2016). GWR can be seen as
an extension of a spatial non-stationarity regression approach at dif-
ferent locations (Kumar et al., 2012). Compared to a traditional re-
gression model, GWR is more powerful and efficient (Song et al., 2016).
Specifically, GWR is an extension of the traditional multiple linear re-
gression toward a local regression, in which regression coefficients are
specific to a location rather than being globally estimated. This model
provides a flexible parameter estimation method for the spatial non-
stationarity of regression coefficients between the target variable and
explanatory variables by measuring those coefficients locally using
local data. Owing to these merits, GWR has been applied to explore the
spatial relationships among the environmental variables (Kumar et al.,
2012), estimate complex spatial variation in parameters (Kumar et al.,
2012), model spatially heterogeneous processes (Lloyd, 2010; Mishra
et al., 2010; Song et al., 2016), and forecast the SOC stock (Mishra
et al., 2010; Kumar et al., 2012; Wang et al., 2012; Song et al., 2016).

Using GWR for SOC stock mapping has been applied in various
studies at different scales. Mishra et al. (2010) compared three models
of GWR, MLR and RK in the Midwest of the United States. In those
studies GWR outperformed MLR and RK. GWR caused a reduction in
root mean square errors (RMSE) of 22% and 2% over MLR and RK. In
China, Wang et al. (2013) compared the prediction performance of
GWR and MLR and showed that the RMSE was reduced by 11%. Song
et al. (2016) compared GWR to MLR, geographically weighted ridge
regression (GWRR), kriging with an external drift (KED), and GWR plus
ordinary kriging of model residuals (GWRSK) for predicting the spatial
distribution of SOC in the Heihe basin, China. Eventually, they found
that GWR better captured the spatial variability of SOC and improving
its prediction accuracy.

Geostatistical models based on global regression coefficients are not
absolutely inferior to GWR model (Lloyd, 2010; Harris and Juggins,
2011; Song et al., 2016). It has not been shown if GWR model out-
performs the RK model (Song et al., 2016). The RK model parameters
are determined using the restricted maximum likelihood (REML)
method with two separate steps: (1) using the least square method to
determine the regression coefficient; (2) using method-of-moments
from the regression model residuals to determine the variogram para-
meters. These two steps are iterated to achieve the best fitting. This
process produces suboptimal parameters so as to produce suboptimal
prediction results (Song et al., 2016). Therefore, comparing GWR with
RK is essential to evaluating the benefits of local regression coefficients
in mapping SOC stock.

This study used a GWR approach to evaluate the spatial variability
of the SOC stocks in topsoil (0–20 cm) at a regional scale. The specific
objectives were to: (1) map SOC stocks in 1982 and 2012; (2) compare
the performance of GWR and RK models; and (3) investigate temporal
dynamics of SOC stocks from 1982 to 2012.

2. Materials and methods

2.1. Site description

This study was conducted in Wafangdian, Liaoning province, China
(121°13′-122°16′ E, 39°20′- 40°07′) (Fig. 1), covering a total area of
3827 km2. Seventy-one percent of the study area was under agriculture
and the rest mainly for garden plots and urban land. The chief crops of
study area are corn, rice, and sorghum in the mid-west plain region, and
fruit orchards in the upland areas. The elevation of this area increased

from southwest to northeast, with a range from 0 m to 772 m above sea
level. The study region has warm temperate continental monsoon cli-
mate, and it is the warmest area in the Northeast of China. The annual
mean temperature (MAT) is 9.3 °C, with the highest temperature of
37.8 °C in summer and the lowest temperature of 19.3 °C in winter. The
annual mean precipitation (MAP) ranges from 580 to 750 mm and
60%–70% of the MAP is in the rainy season (June–August), accom-
panied by heavy rainfall. Garden and forest lands are the main types
that are suitable for re-development. However, soil fertility is poor or
medium (Wang et al., 2016). The main geomorphic units are char-
acterized by complex and undulating hills systems intersected by river
valleys. According to the classification of World Reference Base for Soil
Resources (WRB) (IUSS Working Group, 2014), the dominant soil types
are Cambisols (58%) and Fluvisols (13%) in the study area.

2.2. Soil sampling

2.2.1. Soil survey data in 1982
Typical soil profiles were obtained from the Second National Soil

Survey of Liaoning Province conducted between 1979 and 1990
(OSSLP, 1990). Soil profile data include information on parent material,
cropping system, land use and soil physical and chemical properties.
However, our research only focused on the topsoil (0–20 cm) SOC and
bulk density (BD). A total of 978 topsoil data was obtained to represent
all soil types and land use types in the study area, and we randomly
selected 80% of these as the training data (782), and the remaining
were the testing data (196). The create-subset function in the geosta-
tistical module of ArcGIS 10.2 (ESRI Inc., USA) software was used for
training and testing the model. The unavailable measurements of soil
bulk density (BD) were calculated from SOC content using a pedo-
transfer function (PTF):

= − = <∗BD SOC R P1.46 0.09 ( 0.78, 0.001)2 (1)

2.2.2. Soil sampling in 2012
A total of 1195 (956 for training, 239 for testing) topsoil (0–20 cm)

samples were collected in a new survey on a 1.6 × 1.6 km grid across
the study area in 2012 (Fig. 1, right). The coordinates of sampling sites
were determined by a hand-held Global Positioning System (GPS). Each
sample site was a mixed sample based on the four corners and center
points of the 1 × 1 m square. A subsample of 1 kg per mixed sample
was isolated for laboratory analysis. SOC content of the samples was
determined by a wet oxidation method (Walkley–Black method)
(Nelson and Sommers, 1982) in Key Laboratory of Agricultural Re-
sources and Environment of Liaoning Province, Shenyang Agricultural
University. To estimate dry bulk density, 100 cm3 of undisturbed soil
cores were collected from topsoil layers and then were dried for 48 h at
105 °C for bulk density measurement.

2.3. Environmental variables

A suite of 9 environmental covariates representing topographic and
remote sensing variables were used as predictors in this study.
Environmental variables were collected and converted to raster data
through ArcGIS 10.2 (ESRI Inc., USA). Considering the widespread
extent of the data, we believed that covariates at a 30 × 30 m resolu-
tion were sufficient to meet our needs.

2.3.1. Topographic variables
Digital elevation model (DEM) data covering 30 × 30 m resolution

of the entire study area were obtained from the United States
Geological Survey (USGS, Reston, VA, USA). The elevation gradient
varies from 0 m to 722 m. The low-elevation area is mainly in the west
and southwest coastal areas (0 m), and the corresponding high-eleva-
tion areas are mainly in the northeast mountain area (722 m). Three

S. Wang et al. Geoderma 314 (2018) 8–19

9



Download English Version:

https://daneshyari.com/en/article/8894241

Download Persian Version:

https://daneshyari.com/article/8894241

Daneshyari.com

https://daneshyari.com/en/article/8894241
https://daneshyari.com/article/8894241
https://daneshyari.com

