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A B S T R A C T

The quality of soil maps can best be estimated by collecting additional data at locations selected by probability
sampling. These data can be used in design-based estimation of map quality measures such as the population
mean of the squared prediction errors (MSE) for continuous soil maps and overall accuracy for categorical soil
maps. In areas with large differences in access costs it can be attractive to account for these differences in
selecting validation locations. In this paper two types of sampling design are compared that take access costs into
account: sampling with probabilities proportional to size (pps) and stratified simple random sampling (STSI). In
pps the inverse of the square root of the access costs is used as a size variable. Two estimators of MSE are applied,
the Hansen-Hurwitz and Hajek estimator. In STSI optimal strata are constructed based on access costs. Simple
random sampling (SI) is taken as a reference design. The sampling strategies were compared on the basis of: 1)
the variance of the estimated MSE; 2) the variance of the total pointwise access costs; 3) the 95-percentile of the
sampling distribution of the total access costs. The comparison was done at equal expected total pointwise access
costs. The sampling strategies were compared in a simulation study and a real-world case study in Anhui, China.
In the case study car travel and hiking costs were considered in computing access costs per point. The results
showed that the variance of estimated MSE with pps(Hansen-Hurwitz) was larger than with pps(Hajek) and STSI.
The variances of estimated MSE of pps(Hajek) and STSI were about equal and smaller than that of SI. The gain in
precision compared to SI depends on the cost distribution. The larger the coefficient of variation of the costs, the
larger the gain. The 95 percentile of the sampling distribution of the total pointwise access costs with STSI was
smaller than with pps and SI. The gain in precision of pps(Hajek) and STSI was about 30% accounting for hiking
costs only, and about 10% accounting for the sum of car travel and hiking costs in the case study. The proposed
sampling strategies are of interest for surveying any soil property in areas with marked differences in access
costs, not just for validation of soil maps.

1. Introduction

In recent years, there has been an upsurge of digital soil mapping
due to a global need of soil information for environmental modelling
and developed quantitative methodologies (Minasny and McBratney,
2016). Many soil maps have been produced all over the world
(McBratney et al., 2003; Zhu et al., 2010; Yang et al., 2017; Hengl et al.,
2017). Validation of those maps is important and necessary for

producers and users to understand the quality of the soil maps (Brus
et al., 2011; Bishop et al., 2015; Simo et al., 2015).

Map quality measures such as the population mean of the squared
prediction error (MSE) for continuous soil maps and overall accuracy
(purity) of categorical sol maps, commonly are determined by data-
splitting or cross validation (Brus et al., 2011). A serious drawback of
these validation methods is that a model of the prediction error is
needed to estimate the map quality measures and the uncertainty about
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these estimates. Knotters and Brus (2013) showed that different models
can lead to largely different estimates of map quality. The quality of the
estimated map quality measures depends on the quality of the model.
Preferably, map quality is estimated by model-free, design-based in-
ference, so that discussions on the validity of the estimated map quality
are avoided (Stehman, 1999; Brus et al., 2011). Design-based estima-
tion requires that the validation locations are selected by probability
sampling. Numerous sampling designs are available for selecting
probability samples (de Gruijter et al., 2006). This paper is about how
differences in access costs can be accounted for in the random selection
of the validation locations. The access costs of a point in the field are
the costs of traveling from a starting point to that point by car or/and
by foot. Sampling at lower densities in poorly-accessible and/or remote
areas may increase the sampling efficiency in terms of cost effective-
ness.

In practice, selected sampling points can be difficult to access or
even inaccessible, in areas with poor road networks, dense vegetation
or rough terrain conditions. Researchers thus developed methods to
select alternative sampling locations to replace the locations that in the
field appear to be inaccessible or poorly accessible, see e.g. Thomas
et al., 2012; Kidd et al., 2015, Clifford et al., 2014, and Stumpf et al.,
2016. However, when a map of the accessibility is available, it can be
attractive to account for accessibility constraints already from the be-
ginning, at the design-stage, when selecting the sampling locations.

In recent years a couple of papers were published on how to account
for accessibility constraints or operational costs in selecting the sam-
pling locations. In all these papers the proposed methods are adapta-
tions of conditioned Latin Hypercube Sampling, cLHS (Minasny and
McBratney, 2006). Roudier et al. (2012) proposed to use a second ob-
jective function equal to the sum of the costs over the sampling points
along with the usual objective function of standard cLHS. In the si-
mulated annealing algorithm both objective functions are evaluated,
leading to two acceptance probabilities. A new sample is accepted if a
draw from the uniform distribution is smaller than at least one of the
acceptance probabilities. Yin et al. (2016) also introduced a second
objective function for the access costs, but multiplied this objective
function with the objective function of cLHS. Mulder et al. (2013)
adapted standard cLHS in a different way: they added the sum of the
pointwise off-road travel costs over all sampling points to the O1 cri-
terion of standard cLHS.

In most cases cost-constrained cLHS sampling is used for selecting a
sample for calibration of a model for digital soil mapping. Exceptions
are Silva et al. (2014) and Yin et al. (2016): they used cost-constrained
cLHS for validation of maps. However, as argued by Brus (2015), cLHS
is not a probability sampling design, despite the randomness in the
selection of the sampling locations, and therefore we think cLHS is not a
suitable design for map validation.

This paper presents design-based sampling strategies for validation
of soil maps that account for differences in access costs. We work out
two types of probability sampling design: stratified simple random
sampling (STSI) and sampling with probabilities-proportional-to-size
(pps). Simple random sampling (SI) that does not account for differ-
ences in access costs, is taken as a reference design. The sampling
strategies are compared in a simulation study and a real-world case
study in Anhui, China. In the simulation study the pointwise costs are
simulated by drawing from an exponential distribution. In the case
study both hiking costs and car travel costs from a basepoint to the
sampling point were considered in computing access costs per point.

2. Sampling strategies accounting for access costs

A sampling strategy is a combination of a sampling design and an
estimator (de Gruijter et al., 2006). A sampling design assigns a selec-
tion probability to each possible sample, i.e. combination of units in the
population. For instance in simple random sampling without

replacement of n units out of a population of N units there are ( )N
n

possible samples. The selection probability of each sample is 1/( )N
n

(Lohr, 1999). The sum of the selection probabilities of all samples
containing a specific unit is referred to as the inclusion probability of
that unit. With simple random sampling (with or without replacement)
this inclusion probability equals n/N for each unit in the population.
Note that the inclusion probabilities need not be equal. For instance, in
stratified random sampling they usually differ between the strata. As
long as the inclusion probabilities are known, these can be used in es-
timation, so that unbiased estimates of the population parameter of
interest can be obtained. In the sampling designs of this paper the in-
clusion probabilities are adapted to the location-specific access costs,
the larger these costs the smaller the inclusion probabilities.

An estimator is a formula that is used to estimate a population
parameter, such as the population total or mean. In this paper interest is
not in the population mean of a soil property, but in the population
mean of the squared prediction errors, i.e. the mean of the squared
differences between the predicted values at unobserved points and the
true (observed) values. This unusual choice of the variable of interest
has no implications for the estimator. We simply replace in the formulas
the values of the soil property measured at the sampling locations by
the squared prediction errors.

In this paper, we present two sampling designs that take the loca-
tion-specific access costs into account: 1) sampling with probabilities-
proportional-to-size (pps), and 2) stratified simple random sampling
(STSI). Simple random sampling (SI) in which differences of access
costs between locations are not accounted for, is used as a reference
design. The sampling designs were compared on the basis of: 1) the
sampling variance of the estimated mean of the squared prediction
errors (variance of estimated MSE), 2) the sampling variance of the
total access costs (sum of pointwise access costs over all sampling
points), and 3) the 95-percentile of the sampling distribution of the
total access costs. The sampling variance of an estimated population
parameter such as the mean is the variance of the estimated parameter
over repeated sampling with a given sampling design. It quantifies our
uncertainty about the estimated parameter. The smaller the variance of
the estimated MSE of a sampling strategy, the more precise the sam-
pling strategy, the less uncertain we are about the population MSE. The
smaller the variance of total access costs of a sampling design, the better
the control of the total access costs. We want to avoid the risk of se-
lecting with a given design a probability sample leading to much higher
total access costs than on average with that design. For a fair compar-
ison the sampling variances are computed for cost-equivalent sample
sizes, i.e. for sample sizes such that the expected total access costs are
equal for all three designs. In the next subsection the three sampling
designs are described in detail. Estimators for the sampling variance of
the estimated MSE and of the variance of the total access costs are
given.

2.1. Simple random sampling

In the reference design SI sampling points are selected in-
dependently from each other and with equal probability. Differences in
access costs between points are not accounted for. The population mean
of the squared prediction error (MSE) is estimated by
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with n the sample size (number of selected sampling points) and ei the
squared prediction error. Note that for notational convenience, the
square is not added to the symbol e, so e represents squared prediction
errors.

The sampling variance of the estimated mean squared errors equals
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