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A B S T R A C T

Soil is a critical component of global biogeochemical cycles, and there is an increasing need for cost effective
tools to measure soil carbon stocks and determine soil nitrogen contents. Reflectance spectroscopy can deliver
large volumes of soil carbon data. However, as soil carbon concentrations can be spatially heterogeneous,
imaging spectroscopy presents the best potential to provide high resolution measurements and accurately
characterize soil carbon heterogeneity. For this study, discrete, intact and unground soil samples were collected
and analyzed using a SisuROCK automated hyperspectral imaging system in a laboratory setting, focused on the
shortwave infrared portion of the electromagnetic spectrum. Samples were also analyzed for soil organic carbon
and total nitrogen concentrations by dry combustion to prepare a training data set. Predictive models were built
using continuous wavelet processing along with partial least squares regression and CUBIST models. Spatial
variation of carbon and nitrogen was determined using Moran's i and comparisons of spatial variations among
soil types and horizons were made using a spatial generalized least squares model. Overall, soil organic carbon
was more aggregated in Chernozemic soils and in B and C horizons compared to A horizons. Nitrogen in turn
showed more aggregation for all soil types and horizons compared to soil organic carbon. Results indicated that
imaging spectroscopy can be successfully used to measure and characterize the spatial variability of soil carbon
and nitrogen at the soil aggregate scale.

1. Introduction

Soil organic carbon (SOC) is a critical component of the global
carbon cycle as soil contains 4.5 times the amount of carbon present in
aboveground biomass (Jobbágy and Jackson, 2000), and soils can act as
a source or sink for carbon. Quantifying SOC is essential for under-
standing how much carbon will be released from areas where soils will
become a source for carbon and to understand how much carbon can be
stored in soils acting as carbon sinks. In addition to SOC, nitrogen plays
an essential role in biogeochemical cycles with nitrogen limitation
widespread in terrestrial ecosystems (Vitousek and Howarth, 1991).
There is a need for more rapid and cost-effective methods to quanti-
tatively measure and characterize SOC and total nitrogen (TN). The
increasing need for soil data has been referred to as a soil data crisis
(McBratney et al., 2006).

Reflectance spectroscopy has the potential to solve this crisis, as it is
a rapid and non-destructive analysis that can be utilized both in the
laboratory and in the field. There is an extensive literature on the use of
point measurement reflectance spectroscopy in many regions of the

world to quantify SOC (Bartholomeus et al., 2008; Ben-Dor and Banin,
1990, 1995; Chang et al., 2001; Ge et al., 2014; Gomez et al., 2008;
McBratney et al., 2006; McCarty et al., 2002; Rossel and Behrens, 2010)
and total nitrogen (TN) (Chang et al., 2001; Chang and Laird, 2002;
Morellos et al., 2016; St. Luce et al., 2014). While some work has been
done analyzing SOC and TN with point reflectance spectroscopy in
Canada (Martin et al., 2002; Xie et al., 2011), the literature is not as
extensive.

Previous research has established that machine learning models can
outperform partial least squares regression when used to build pre-
dictive models to measure soil properties from reflectance spectra
(Doetterl et al., 2013; Nawar et al., 2016; Rossel and Behrens, 2010;
Sorenson et al., 2017b). Additionally, an alternative signal processing
method, continuous wavelet transforms, has improved results derived
from the analysis of reflectance spectra compared to conventional
signal processing techniques such as Savitsky-Golay smoothing, deri-
vatives and multiplicative scatter correction (Rossel and Behrens, 2010;
Viscarra Rossel and Lark, 2009). Combining wavelet analysis with
machine learning models has been successful in producing SOC and TN
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predictive models for point spectroscopy systems with Canadian soils
(Sorenson et al., 2017b).

Imaging spectroscopy has the advantage over point measurements
of providing high resolution continuous spatial measurements. Imaging
spectroscopy studies in soil science have tended to focus on airborne or
space borne applications (Gomez et al., 2008, 2012; Melendez-Pastor
et al., 2010; Ouerghemmi et al., 2011) as compared to measurements at
the soil sample or profile scale where higher spatial resolutions can be
achieved (e.g.; < 1 mm in contract to> 1 m per pixel). These studies
have mapped different soil properties using imaging spectroscopy in-
cluding: clay, sand, silt, SOC, and inorganic carbon content. Imaging
spectroscopy can also be utilized at the laboratory scale to measure
variation within samples, as well as to obtain high vertical resolution
data. Lastly, laboratory imaging spectroscopy has been used to char-
acterize the spatial variability of SOC and TN for a soil profile in Ger-
many (Steffens and Buddenbaum, 2013). There are no studies using
imaging spectroscopy systems to measure SOC and TN in Canada,
specifically using wavelet analysis to analyze intact and unground
samples.

Soil organic matter varies spatially both horizontally and vertically,
and conventional analytical methods have limited ability to measure
SOC and TN in fine spatial resolution. Reflectance spectroscopy has
been shown to be a valuable tool to measure SOC in high vertical spatial
resolution (Doetterl et al., 2013). High vertical resolution measure-
ments can illustrate how SOC changes with depth depending on, for
instance, the underlying parent material, and how these changes may
be affected by distinct parent materials. Approximately 50% of SOC is
contained below 20 cm in boreal forest soils and 59% is below 20 cm in
croplands (Jobbágy and Jackson, 2000). Subsoil organic matter corre-
sponds to a substantial proportion of the global soil carbon pool, and its
characterization is essential for accurate soil carbon budgets. Other
work has found that approximately 63% of SOC and 64% of TN are
contained below 30 cm (Wang et al., 2017). For these reasons, tools
that can accurately and cost effectively measure SOC at depth are very
valuable for developing soil carbon budgets.

As imaging spectroscopy contains spatial as well as spectral

information, the spatial variability of several distinct soil attributes can
be analyzed at a variety of spatial scales. Imaging spectroscopy has not
been used to characterize the soil aggregate scale spatial structure of
SOC and TN in Canadian soils, and to determine how spatial structure
in SOC and TN may vary between soil types and horizons. Canadian
soils tend to be distinct from other regions that have been a focus of
reflectance spectroscopy research in that they have relatively high or-
ganic carbon contents, can be frequently water saturated and are re-
latively young due to recent glaciation. Based on the success of point
spectra to measure SOC and TN, and the success of imaging spectro-
scopy to measure soil and geological properties, the first objective of
this study was to determine if shortwave infrared imaging spectroscopy
could be used to measure SOC and TN on intact and unground samples
in the laboratory for a variety of Canadian soil samples. The second
objective was to use the imaging spectroscopy results to characterize
the spatial distribution of SOC and TN at the soil aggregate scale, and
determine if the distribution of SOC and TN varies based on soil type
and horizon at fine spatial scales.

2. Materials and methods

2.1. Sample collection and preparation

A total of 370 soil samples were collected in Alberta and
Saskatchewan, Canada in August and September 2015 and May 2016
(Table 1). To capture a range of soil samples common across the Ca-
nadian Prairies, samples were collected from the main soil orders that
occur in this region: Chernozems, Gleysols and Luvisols (Table 1). In
total, 121 Chernozemic samples (58 A horizon samples, 48 B horizon
samples and 17 C horizon samples), 137 Gleysolic samples (47 A hor-
izons samples, 36 B horizon samples and 54 C horizon sample) and 96
Luvisolic samples (36 A horizon samples, 33 B horizon samples, and 27
C horizon samples) were collected. Additionally, 16 Brunisolic samples
(5 A horizon samples, 5 B horizon samples, and 6 C horizon samples)
were collected as they were encountered opportunistically during soil
sampling. Less Brunisolic samples were collected because the focus of

Table 1
Soil taxonomic classification and properties for the samples used to build predictive models.

Soil classification (Canadian)
(Soil Classification Working Group, 1998)

Soil classification
(WRB)
(IUSS Working Group WRB, 2014)

Horizon Number of
samples

Soil organic carbon
(g kg−1)

Total nitrogen
(g kg−1)

Orthic Gray Luvisol Albic Luvisol A 5 4.8–16.4 0.6–1.3
B 10 2.4–7.6 0.4–0.9
C 10 2.3–6.2 0.2–0.6

Dark Gray Luvisol Albic Luvisol A 28 2.7–26.3 0.4–2.3
Gleyed Dark Gray Luvisol Gleyed Luvisol A 3 4.4–20.1 0.5–1.7

B 3 3.2–9.0 0.4–0.6
Humic Luvic Gleysol Planosol A 4 4.5–43.3 1.7–3.4

B 5 4.4–29.8 0.7–2.2
C 1 22.9

Orthic Luvic Gleysol Planosol A 2 2.9–5.0 0.5–0.6
B 5 1.9–6.5 0.4–0.9
C 5 2.1–6.2 0.3–0.9

Eutric Brunisol Eutric Cambisol A 5 5.8–37.1 0.5–2.0
B 2 2.9–3.7 0.3–0.4
C 4 0.9–2.1 0.1–0.2

Gleyed Black Chernozem Gleyic Chernozem A 1 35.2 3.1
B 3 8.2–19.8 0.5–0.6

Orthic Black Chernozem Chernozem A 51 11.2–64.2 1.0–6.3
B 4 11.2–31.9 0.8–1.2

Rego Black Chernozem Chernozem A 3 29–52.6 2.7–5.0
Orthic Gleysol Eutric Gleysol B 1 7.1 0.5

C 5 3.5–8.4 0.3–0.5
Orthic Humic Gleysol Mollic Gleysol A 29 9.2–75.9 0.8–7.6

B 1 0.61 0.6
C 2 2.5–3.2 0.4

Rego Gleysol Gleysol C 3 6.8–20.2 0.6–2.0
Rego Humic Gleysol Mollic Gleysol A 6 55.6–75.6 5.2–7.4
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