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A B S T R A C T

Bayesian inference provides a mathematically elegant and robust approach to constrain numerical model pre-
dictions with system knowledge and observations. Technical challenges, such as evaluating a large number of
models with long runtimes, have restricted the application of Bayesian inference to groundwater modeling. To
overcome such technical challenges, we use Gaussian process emulators to replace a transient regional
groundwater MODFLOW model for computing objective functions during model constraining. The regional
model is designed to assess the potential impact of a proposed coal seam gas (CSG) development on groundwater
levels in the Richmond River catchment, Clarence-Moreton Basin, Australia. The emulators were trained using
4000 snapshots derived from the MODFLOW model and subsequently used to replace the MODFLOW model in
an Approximate Bayesian Computation (ABC) scheme. ABC was deemed the more appropriate choice as it re-
laxes the need to derive an explicit likelihood function that the formal Bayesian analysis requires. The study
demonstrated the flexibility of the Gaussian process emulators, which can accurately reproduce the original
model behavior at a fraction of the computational cost (from hours to seconds). The gain in computational
efficiency using the proposed approach allows the global calibration and uncertainty algorithms to become more
feasible for computationally demanding groundwater models. Based on the ABC analysis, the probability for the
simulated CSG development causing a water table change of more than 0.2 m was less than 5%. In addition to a
probabilistic estimate of the prediction, an added value of emulator-assisted ABC inference is providing in-
formation on the extent to which observations can constrain parameters and predictions, as well as the flexibility
to include various quantitative and qualitative parameter constraining information.

1. Introduction

Doherty (2011) states that “… a model cannot promise the right
answer. However, if properly constructed, a model can promise that the
right answer lies within the uncertainty limits which are its responsi-
bility to construct”. This statement is a reflection of the need to shift the
focus of groundwater modeling from seeking a single optimal predic-
tion to a prediction distribution that encompasses the range of predic-
tions that are consistent with observations. Uncertainty analysis can be
considered as the process to achieve such a distribution to support
evidence-based decision making. Predictive uncertainty can be quan-
tified through (i) forward propagation of input uncertainty or (ii) an
inverse assessment of parameters where historical measurements are

available to constrain the model (Beven, 2007; Refsgaard et al., 2007).
Most practical groundwater modeling applications belong to the latter
type, aiming to inform decision-making for water resource manage-
ment. The inverse assessment of uncertainty requires sampling the prior
distribution of parameters to yield posterior parameter distributions
conditioned on observations.

A multitude of methods for assessing the predictive uncertainty
using various sampling strategies have been reported in the literature,
such as pure Monte Carlo (MC) sampling, stratified sampling, im-
portance sampling, projection-based sampling, or combinations of them
(Beven, 2008). Among those, the null space Monte Carlo (NSMC)
(Herckenrath et al., 2015; James et al., 2009; Sepúlveda and Doherty,
2015) is probably the most widely used method in groundwater

https://doi.org/10.1016/j.jhydrol.2018.07.005
Received 22 December 2017; Received in revised form 16 May 2018; Accepted 2 July 2018

⁎ Corresponding author.
E-mail address: Tao.Cui@csiro.au (T. Cui).

Journal of Hydrology 564 (2018) 191–207

Available online 05 July 2018
0022-1694/ Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2018.07.005
https://doi.org/10.1016/j.jhydrol.2018.07.005
mailto:Tao.Cui@csiro.au
https://doi.org/10.1016/j.jhydrol.2018.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2018.07.005&domain=pdf


modelling, especially for computationally expensive groundwater
models either due to large spatial and temporal scales or coupled
multiple processes. Although the projection-based NSMC can sig-
nificantly reduce computational cost and allow a non-linear uncertainty
analysis for computationally intensive groundwater models, the pos-
terior-distribution is always surrounding a pre-calibrated parameter set
using a gradient-based sampling algorithm. The method is sensitive to
initial parameter assignment and prone to local minima when the
model is not linear (or not approximately linear), although the bias may
be minimized to some extent by multiple starting-points NSMC (Keating
et al., 2010; Tavakoli et al., 2013). Meanwhile, with the continuous rise
in computing power and improvement of data measurements, Bayesian
analysis based on holistic sampling algorithms has become increasingly
popular for posterior parameter inference in other fields (Sadegh and
Vrugt, 2014; Vrugt and Sadegh, 2013). However, two key issues have
hindered the application of Bayesian inference in groundwater model-
ling, although other factors exist (Pappenberger and Beven, 2006), such
as a steep learning curve, and a lack of well-documented and robust
tools with a user-friendly interface.

The first factor is the heavy computational burden for most practical
groundwater models. Despite the advances in algorithmic sampling
efficiencies (Maier et al., 2014; J. A. Vrugt et al., 2009), the number of
model runs required to accurately approximate the posterior distribu-
tions are counted in tens to hundreds of thousands for highly para-
meterized groundwater models (Keating et al., 2010). Constraining
wide and uninformative prior parameter distributions for a complex
regional groundwater model through Bayesian inference using a hol-
istic search algorithm requires an often prohibitively large number of
model runs. Model emulation has a great potential to overcome this
particular issue. The principle of model emulation is to use computa-
tionally-efficient algorithms to replace computationally-demanding
models. Emulators are also known as surrogate models, meta-models,
reduced models, proxy models, lower fidelity models, and response
surfaces (Razavi et al., 2012). Numerous model emulation techniques
have been explored in various disciplines, and they can be broadly
categorized into three classes; data-driven methods, projection-based
methods, and multi-fidelity methods (Asher et al., 2015; Robinson
et al., 2008).

The emulator is typically a black-box or statistical model that is
trained on a set of model inputs and their corresponding outputs. A
well-trained emulator can yield relatively accurate and precise predic-
tions for new inputs such as parameter values and forcing variables that
were not part of the original training set. Emulators have gained po-
pularity for performing tasks such as model calibration, sensitivity
analysis and uncertainty analysis, where a model must be run a large
number of times. Some popular choices in the literature have included
Gaussian processes (GPs) (Kennedy and O’Hagan, 2001; Liu and West,
2009; O’Hagan, 2006; Sacks et al., 1989), Neural Networks (Kourakos
and Mantoglou, 2009; Yan and Minsker, 2006), Random Forests
(Hooten et al., 2011; Leeds et al., 2014) and Generalized Additive

Models (GAMs) (Stanfill et al., 2015; Storlie et al., 2009; Strong et al.,
2014). Table 1 summarizes the recent applications of model emulation
in applied groundwater modeling. Although these previous studies
significantly advanced our understanding of groundwater model emu-
lation, to the authors’ knowledge, GP emulators have not been pre-
viously applied to regional groundwater models that are used to pro-
vide environmental impact assessment of deep resource development in
a sedimentary basin. These models needs to include both the shallow
unconsolidated aquifers where most receptors are located and the deep
porous rock formations where resource development occurs (Raiber
et al., 2015); such models are complex and highly non-linear (Cui et al.,
2018a; Sreekanth et al., 2018).

Gaussian process emulators (O’Hagan, 2006) are mathematically
very close to Kriging interpolation (Kleijnen, 2009); they are robust and
well-establish tools for accurate representation of complex response
surfaces derived from numerical models. They were chosen in this study
as they: (1) can provide a probabilistic estimate of the uncertainty in
the emulated prediction (Rasmussen and Williams, 2006), (2) are
straightforward and quick to generate, (3) can be easily tailored to
individual predictions, and (4) allow flexible parameterization (Bastos
and O’Hagan, 2009). Razavi et al. (2012) and Asher et al. (2015) have
provided a thorough review on the application of surrogate models in
water resources along with a comprehensive comparison among dif-
ferent types of emulators.

The second critical issue that limits the application of Bayesian in-
ference is the difficulty to define an explicit likelihood function for
complex and non-linear groundwater models. Although different like-
lihood functions can be derived based on some assumptions, such as
that the error residuals are normally distributed with a variance related
to the observation uncertainty, this observation uncertainty is however
often very difficult to establish and the assumptions are often not rea-
listic (Hill and Tiedeman, 2007). The Approximate Bayesian Compu-
tation (ABC) framework (Nott et al., 2012; Vrugt and Sadegh, 2013)
relaxes the need for computing an explicit likelihood function by using
summary statistics or multiple objective functions. ABC has its roots in
the rejection sampling in which only those parameter combinations that
meet specific defined acceptance criteria are accepted. This is in con-
trast with formal Bayesian analysis where parameter combinations are
accepted based on a likelihood function. ABC is also superior in diag-
nostic model calibration by defining multiple summary statistics that
capture different aspects of the modelled system (Vrugt and Sadegh,
2013). ABC has been recently applied in hydrology by Nott et al. (2012)
and Vrugt and Sadegh (2013), however and to the authors’ knowledge,
it has not been applied in groundwater modelling yet.

Another critical challenge that the classical groundwater model
calibration faces is the design of the objection function. Different
weight factors are usually applied to different types of numerical ob-
servations to ensure that every type of observation does influence the
model calibration, however, the determining the weights is not
straightforward and is usually subjective (Doherty, 2015). Qualitative

Table 1
Summary of recent applications of model emulation in applied groundwater modeling.

Paper Emulation technique Numerical model Discretization Study area Purpose

Laloy et al. (2013) Polynomial chaos
expansion (PCE)

Steady-state
groundwater flow

113 km2, 14 layers Nete Basin, Belgium Posterior inference of a highly parameterized
groundwater flow model

Wu et al. (2014) Polynomial chaos
expansion (PCE)

Coupled SW-GW model 9106 km2, 5 layers Zhangeye Basin, China Monte Carlo uncertainty analysis

Wu et al. (2015) Support vector
machines (SVM)

Coupled SW-GW model 9106 km2, 5 layers Zhangeye Basin, China Optimize SW/GW ratio in irrigation

Xu et al. (2017) Support vector
regression (SVR)

3D transient
groundwater model

844 km2, 3 layers Spokane Valley-Rathdrum
Prairie, United States

Investigate the impact of structure error on
calibration and prediction

Rajabi and Ketabchi
(2017)

Gaussian process
emulator (GP)

3D transport model 90.5 km2, 2 layers, Kish Island, Iran Optimization of coastal groundwater
management

Cui et al. 2018a,b (this
paper)

Gaussian process
emulator (GP)

3D transient
groundwater model

8230 km2, 6 layers, Clarence-Moreton Basin,
Australia

Improve computational efficiency for global
model calibration and uncertainty analysis

T. Cui et al. Journal of Hydrology 564 (2018) 191–207

192



Download English Version:

https://daneshyari.com/en/article/8894465

Download Persian Version:

https://daneshyari.com/article/8894465

Daneshyari.com

https://daneshyari.com/en/article/8894465
https://daneshyari.com/article/8894465
https://daneshyari.com

