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A B S T R A C T

Brinkman’s model is one of the common mathematical formulations used in modeling fluid flow in karst aquifers.
The Brinkman’s model is a hybrid formulation that allows the use of a single transport equation to model fluid
flow in both the free-flow and porous regions of a karst aquifer, by transitioning between the Stokes equation
and the Darcy’s law. However, the Brinkman’s model is computationally expensive, requiring the solution of four
different equations to obtain the pressures and velocities in a three-dimensional aquifer. Darcy’s model provides
a cheaper alternative, because it allows the substitution of the Darcy’s equation into the mass conservation
equation and thus requires the solution of only one parabolic equation. However, while the Darcy’s model
produces accurate results within the porous medium, it fails to provide satisfactory results in the free-flow
regions of the karst aquifers. We propose a sector modeling approach to model fluid flow in karst aquifers. The
sector modeling approach takes advantage of both the computational inexpensiveness of the Darcy’s model and
the accuracy of Brinkman’s model in the caves. This method was compared to the Brinkman’s model and the
Darcy’s model. Three examples are presented to study the effectiveness of the sector modeling technique. The
first example is a simple model consisting of a straight conduit surrounded by porous regimes on either side
while the second and third examples are more complicated structures consisting of complex geometrical caves
embedded in a highly heterogeneous porous medium. Results show that the sector modeling approach provides
an excellent match to the Brinkman’s model and with much faster computations. Specifically, sector modeling
was 4.6 times faster than the Brinkman’s model in the first example, 13 times faster in the second; and 25 times
faster in the third example. We also observed negligible deterioration in accuracy of results from sector modeling
when the size of the extracted sector relative to the full-field is reduced.

1. Introduction

Karst aquifers cover 12% of the terrestrial land and provide a source
of drinking water to almost a quarter of the world’s population (Ford
and Williams, 2007; Andreo et al., 2010; Hartmann et al., 2014).
Therefore, it is essential to accurately model the flow of water within
these aquifers. The uniqueness of karst reservoirs is that the karst to-
pography is characterized by the presence of highly porous and
permeable caverns and channels formed by karstification (Jackson,
1997). The karst caves provide pathways that facilitate the movement
of fluids and contaminants within such aquifers (Huntoon, 1999). Ad-
vection, diffusion and adsorption are the main physical processes re-
sponsible for the transport of contaminants, solutes and tracers, with
advection being the primary process responsible for movement of these
substances in caves (Field and Pinsky, 2000). Several numerical studies
have been conducted on modeling the transport of chemicals within
karst aquifers (Göppert and Goldscheider, 2007; Kincaid et al., 2002;
Maloszewski et al., 1999; Morales-Juberías et al., 1997; Rivard and

Delay, 2004).
Numerical modelling of groundwater flow within karst aquifers is

challenging. The complexity in modelling arises due to the presence of
non-Darcian flow elements in the transport equations, mainly due to the
presence of fractures, vugs, and caves having varying sizes, connectivity
and distribution depending on the depositional environment and the
diagenetic processes involved. The presence of these geomorphological
features introduces two major uncertainties which adversely affect the
accuracy of the model: 1) the lack of knowledge of the exact position of
the interface between porous medium and vugs/caves complicates the
accurate modelling of flow in such features (Popov et al., 2009); and 2)
uncertainties related to the physical properties of the different geo-
morphological features such as their sizes, connectivities, and dis-
tributions, directly affect the rate and direction of fluid flow in the
aquifer (Kossack and Gurpinar, 2001). Different approaches have been
developed to model the flow of groundwater in karst aquifers. The
simplest is the lumped parameter model or the black box model
(Scanlon et al., 2003; Wanakule and Anaya, 1993; Zhang et al., 1996).
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The main advantage of this model is that it requires limited information
to produce results as it neglects the spatial dimensions of the aquifer.
However, this omission of spatial dimensions is undesirable because it
leads to a lack of information on the direction and rates of groundwater
flow.

The other method of modelling flow within karst aquifers is the
distributed parameter model which requires the discretization of the
whole system into grid blocks. Thus, this method uses information on
the spatial variability of the system. Generally, modeling fluid flow
using the distributed parameter model involves combining the con-
tinuity equation with an appropriate transport equation. The continuity
equation ensures that all mass flows in and out of the flow domain are
accounted for. The transport equation describes the manner in which
fluid mass is moved from one point to the other within the flow domain.
Under the distributed parameter model, many approaches are currently
used to model flow of fluid in karstic aquifers. One of these methods is
the equivalent porous media (EPM) approach in which the fractures,
vugs, caves, and the porous matrix are treated as one single equivalent
porous medium with a single hydraulic conductivity (Ghasemizadeh
et al., 2015; Long et al., 1982; Pankow et al., 1986; Scanlon et al.,
2003). The disadvantage of this method is that it oversimplifies the
complex flow patterns and may not be accurate. Another limitation of
the EPM model is that it cannot accurately predict the direction of the
flow.

The discontinuum approach (also known as Darcy-Stokes model)
uses the Navier-Stokes equation to model flow in the free-flow region
and the Darcy’s equation in the porous region (Arbogast and Brunson,
2007; Arbogast and Gomez, 2009; Arbogast and Lehr, 2006; Peng et al.,
2009). A slip velocity was introduced at the interface between the two
regions using appropriate boundary conditions (Beavers et al., 1970;
Beavers and Joseph, 1967). The Darcy-Stokes equation along with the
interface condition models a slip velocity at the interface between the
cave and the porous media. This yields a sharp change to Darcy’s ve-
locity in the porous region. This is not accurate because as the fluid
transitions from the free-flow region to the porous media, the fluid
velocity should gradually decreases inside the porous media until it
becomes equal to the Darcy velocity (Neale and Nader, 1974).

Brinkman’s equation (Brinkman, 1949) models flow in karst aqui-
fers using a single equation that yields a simplified Navier-Stokes
equation in the caves and breaks down into the Darcy’s equation in the
porous region. Hence, in the Brinkman’s model, the whole system is
treated as a single continuous domain (Yao and Huang, 2016). Several
successful studies have been carried out to simulate the flow of single
phase fluids in fractured, vuggy, microkarstic aquifers and reservoirs
(Bi et al., 2009; He et al., 2015; Krotkiewski et al., 2011; Ligaarden
et al., 2010; Mohamed et al., 2015; Popov et al., 2009, 2007b).

The Brinkman’s model attempts to model flow within karst aquifers
by simultaneously solving the mass continuity equation and the mo-
mentum equation (Brinkman’s equation) for the pressures and velocity
distribution within the karst aquifer. Because the Brinkman’s model
solves one continuity equation and up to three momentum balance
equation per grid block, the method is very expensive particularly for
large aquifers. The Darcy’s model offers a cheaper alternative to the
Brinkman’s model because it does not require the solution of multiple
equations per grid block. A simplification is made by replacing the
velocity term in the mass continuity equation by the Darcy’s equation.
This allows solving for only the pressure distribution at the new time
step in the aquifer and then computing the velocities using these
pressures. While the Darcy’s model gives reliable estimates of pressure
and velocity distributions in the porous media, it gives an inaccurate
velocity profile in the caves (Field, 1997).

We propose a sector modeling approach for fluid flow in Karst
aquifers. This approach consists of three stages at every simulation
time-step. The first stage involves solving the cheap Darcy’s model on
the entire aquifer (full-field model) while the second stage involves
solving the more expensive Brinkman’s model on much smaller sectors

extracted from the reservoir (sector models). The third stage involves
updating the result from the full-field model with those from the sector
models. Thus, the sector modeling approach takes advantage of both
the computational inexpensiveness of the Darcy’s model and the accu-
racy of Brinkman’s model in the caves. To avoid confusion, we define
some terminologies introduced in this paper. Cave is synonymous with
free-flow region while full-field is synonymous with entire aquifer. A
full-field model involves solving the Darcy’s model on the entire
aquifer. A sector consists of a cave and a small porous region sur-
rounding it. A sector is extracted from the full-field. A sector model
involves solving the Brinkman’s model on a sector while imposing dy-
namic flux boundary conditions (obtained from the full-field model) on
the sector.

In addition to fluid flow modeling, tracer transport in the karst
aquifer is implemented to enable us to compare the performance of
sector modeling with those of the Darcy’s and Brinkman’s models.
Three examples are presented to show the effectiveness of this method.
The first example involves a simple aquifer model consisting of a cave
surrounded on two sides by porous media. The second and third ex-
amples are more complex heterogeneous geological structures con-
sisting of more realistic caves with randomly placed wells. The results
from the sector modeling approach were compared with results from
the Darcy’s and Brinkman’s models. The results show excellent match
between the sector modeling approach and the Brinkman’s model. In
addition, the sector modeling approach was much faster than the
Brinkman’s approach.

2. Mathematical models of flow

This section describes the differential equations governing the flow
of a single-phase fluid in a complex karst aquifer.

2.1. The Brinkman’s model

Brinkman (1949) developed an equation that could model the
coupled flow in an aquifer consisting of free-flow and porous regions.
The Brinkman’s equation is given by

∇ + →− ∇ → =−p μK u μ u 0eff
1 2

(1)

In Eq. (1), p is the pressure − −ML T( )1 2 , µ is the fluid viscosity
− −ML T( )1 1 , K is the permeability tensor L( )2 , →u is the velocity vector
−LT( )1 , and μeff is the effective fluid viscosity, a pseudo-parameter

(introduced by Brinkman) whose value changes depending on the re-
gion of interest. An advantage of using the Brinkman’s equation is that
it yields a simplified form of Navier-Stokes equation in the free-flow
region and the Darcy’s equation in the porous media. This is achieved
by adjusting the values of K and μeff . When =μ μeff and → ∞K , Eq.
(1) becomes the Stokes equation:

∇ − ∇ → =p μ u 02 (2)

The Stokes equation in Eq. (2), is a simplification of Navier-Stokes
equation when steady-state flow is assumed (Bird et al., 2002). Eq. (2)
is used to model viscous flow in the free flow region consisting of vugs,
fractures and caves. When =μ 0eff and ≪ ∞K

∞K( is much less than ), Eq. (1) becomes Darcy’s equation:

∇ + → =−p μK u 01 (3)

which is used to model flow of fluids in porous media (Darcy, 1856).
When =μ μeff and ≪ ∞K ∞K( is much less than ), Eq. (1) is used to
model the Brinkman’s region which starts just at the interface between
the two regions and extends some distance into the porous region until
the effect of the viscous shear term becomes negligible. Several studies
have been conducted to find an appropriate value of the effective
viscosity parameter in the transition zone (Adler, 1979; Belhaj et al.,
2003; Durlofsky and Brady, 1987; Happel and Brenner, 1981; Howells,
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