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A B S T R A C T

Traditional methods for the calculation of rating curves from measurements of water level and discharge are
criticised as being limited and complicated to implement, such that manual methods are still often used. Two
methods for automatic computation are developed using least-squares approximation, one based on polynomials
and the other on piecewise-continuous splines. Computational problems are investigated and procedures re-
commended to overcome them. Both methods are found to work well and once the parameters for a gauging
station have been determined, rating data can be processed automatically. For some streams, ephemeral changes
of resistance may be important, evidenced by scattered or loopy data. For such cases, the approximation methods
can be used to generate a rating envelope as well, allowing the routine calculation also of maximum and
minimum expected flows. Criticism is made of current shift curve practices. Finally, the approximation methods
allow the specification of weights for the data points, enabling the filtering of data, especially decreasing the
importance of points with age and allowing the computation of a rating curve for any time in the past or present.

1. Introduction

A rating curve is a relationship between the discharge Q of a stream
and h, the stage or surface elevation, so that when routine measure-
ments of stage at a gauging station are made, the flow can be estimated.
The curve is calculated from a number of h Q( , ) rating data points from
that station, using relatively infrequent measurements of the velocity
distribution, cross-section, and stage of the stream.

The problem of the automatic calculation of rating curves has re-
ceived relatively little research attention. The main problem seems to
be the perceived success and almost universal use of the power function

= −Q C h h( ) ,μ
0 (1)

where C h, 0 and μ are constants, and which is a straight line on
−Q h h(log , log( ))0 axes. The reasons for it being a problem include:

• On one hand it is too simple, with only three parameters, and is
limited in its accuracy and generality.

• On the other hand, it is too complicated, such that the three para-
meters occur nonlinearly and solving for them is difficult such that
manual methods are often used.

The power function, and its representation as a straight line on
logarithmic axes appears ubiquitously in books, standards, and lecture
notes. Whereas it is sometimes a convenient approximation to the

relationship Q h( ) over the whole range of data, in general it is not. It is
an over-simplification of the real hydraulics at many gauging stations.
Such a formula is valid for an infinitely-wide weir in infinitely-deep
water or for uniform flow in an infinitely-wide rectangular channel.
There is no reason for a real rating curve to follow such a function
closely. Insufficient knowledge of hydraulics has led to a too-great be-
lief in the power function, on one hand by practitioners, and on the
other by theoreticians in related disciplines. This has led to complicated
procedures in some organisations where sequences of power functions
are used, and a great deal of trouble goes into the laborious manual
fitting of piecewise-continuous straight lines on logarithmic axes by
adjusting the offsets h0 for each on different vertical −h hlog( )0 axes.

The more general representation of Q by a polynomial of higher
degree M has been in the background for some time:

∑= + + + …+ =
=

Q a a h a h a h a h ,M
M
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M

m
m
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2

0 (2)

where …a a a, , , M0 1 are coefficients. It was presented by Herschy in the
first edition of his book in 1985, most recently in Herschy (2009, p195),
in International Standard 7066-2 (1988), and in Morgenschweis (2010,
p384). Standard linear least-squares methods can be used to determine
the coefficients. Mirza (2003) used it successfully with just =M 3, and
in that scholarly work gave considerable attention to statistical matters.

Reading those sources and water industry websites, but also reading
between the lines, it seems that the approximation by polynomials,
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despite its promise, has not often been adopted, and usually only im-
plemented to low degree. Herschy wrote in the first edition of his book
in 1985, and 24 years later again in the third edition, (Herschy, 2009,
p195): “however some user experience is still required with this method
before it is accepted as an alternative to the existing methods”, implying
that its use has been languishing.

Fenton and Keller (2001, Section 6.3.2), suggested writing the
polynomial for Q raised to the power ν, specified a priori:

∑= + + + …+ =
=

Q a a h a h a h a h ,ν
M
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0 (3)

which is actually a simple generalisation of the power function, Eq. (1),
written in the form = +Q a a h( ) ν

0 1
1/ , to = + + + …Q a a h a h( ) ν

0 1 2
2 1/ .

They recommended a value of =ν 1
2 , on the basis of that being the

mean value in the hydraulic discharge formulae for a sequence of weir
and channel cross-sections that modelled local and channel control
(Fenton, 2001). The use of such a fractional value of ν has two effects:

1. For small flows, h and Q small, the data usually is such that

= +Q a a h,ν
0 1 (4)

with =ν 1
2 , is a surprisingly good approximation when compared

with power function approximations in which ν is a free parameter,
as shown in Fenton (2015b, Section 3.4). In this small flow limit the
more general polynomial approximation just has to simulate nearly-
linear variation, which it can easily do.

2. For larger flows, when the higher degree terms in Eq. (3) become
important, the use of Qν means that the magnitude of the dependent
variable to be approximated is numerically much smaller, so that,
instead of a range of say, ≈Q 1 to −10 m s4 3 1, for =ν 1

2 a numerical
range ≈Q 11/2 to 102 has to be approximated. This is a simple
version of a power transformation used in more formal data analysis
applications to stabilise variance and to make the data more normal
distribution-like.

In recent years there have been a number of papers with a quite
different way of looking at the problem, using Bayesian statistics. Le
Coz et al. (2014) provided an excellent survey both of that field and the
rating curve problem generally. However, all the papers they referred to
used either a single power function or two or more of them, each in the
belief that they were following hydraulic principles. It is the assertion
here that there is little fundamental about the power function or the
application of hydraulic theory, and here a rather different path will be
followed, treating the problem as one of data approximation.

In that spirit, Coxon et al. (2015) used LOWESS (LOcally WeightEd
Scatterplot Smoothing) to obtain rating curves for a huge number of
sites. The method considered each stage-discharge measurement as the
central point in a subset of the data points. The estimate of the dis-
charge for the data point and its variance was generated by fitting a
weighted linear regression to the selected data. Weights were depen-
dent upon the differences in stage and gave most weight to data closest
to the central measurement. To account for outlier points, two passes
were made, then a weight function was used to weight each data point
according to how far the point was from the first fitted line, reducing
the impact of those furthest from it. The procedure could be used to
satisfy the goal in this work, of developing methods for practical au-
tomatic computation. It seems good in principle, but there are a number
of adjustable parameters and the reduction of importance of outlying
points might deny the importance of some causative processes and
trends at work. It functioned well for the demanding application that
Coxon et al. required of it, where the main thrust was the quantification
of uncertainty rather than the generation of approximations.

Fenton (2015b), hereafter referred to as Report I, considered several
aspects of the problem of the automatic generation of rating curves. The
present paper is based on that report, which contains more detail. Here

first, the application of polynomial approximation methods is treated at
length. Several mathematical reasons for problems associated with
them are given, with physical explanations and methods for over-
coming them. It is considered imperative to use series of Chebyshev
polynomials rather than the simple polynomials shown above which are
series of monomials hm. Also it is desirable to approximate, not values
of discharge Q, but Qν, where ν is a fractional exponent, as in Eq. (3). It
is usually able to be taken to be 1

2
, but in extreme cases can be calcu-

lated by a method that is presented. Other than ν, the degree M of the
polynomial series is the only free parameter. It is possible to use large
values of M but if the data has gaps there will usually be one degree
beyond which large fluctuations occur in between accurate approx-
imation of the data points. To overcome that problem, an alternative
approximation method is developed using piecewise-continuous
splines, in which case the parameters of the problem are the number
and stage values of knot points between which simple quadratic or
cubic spline functions are used. A simple automatic method is suggested
for the placing of those knots, just requiring there to be the same
number of data points in each interval. This usually works well.
Otherwise, in difficult cases the values of stage for the knot points can
be specified. Results for both the polynomial method and the approx-
imating spline method are presented. They are both found to perform
well and have the potential to be standard procedures for rating curve
generation. Then possible reasons for scatter of rating points are dis-
cussed. For such data, the methods can be modified to calculate ad-
ditionally a rating envelope, giving likely maximum and minimum flow
rating curves. For discrepant points it is suggested that current use of
shift curves should be re-examined. Finally, the approximation methods
are simply modified to allow the importance of data points to decrease
with age. This allows the generation of a rating curve on any date in the
past also, thereby determining any relatively slow long term changes in
the stream.

2. Polynomial approximation

Eq. (3) is now generalised by considering the approximating func-
tion to be made up, not of a series of monomials hm, but of more general
functions f h( )m :

∑= = + + …+
=

Q a f h a f h a f h a f h( ) ( ) ( ) ( ).ν
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(5)

In application, the functions are specified a priori, and the unknown
coefficients am found by least-squares fitting to data points h Q( , )n n

ν for
= …n N1, , . Each of the functions applies over the whole data range of

h, and so methods using them are global ones, as distinct from those in
Section 3 below where piecewise-continuous local functions are used.
We will consider the functions f h( )m each to be a polynomial of degree
m so that the sum of such polynomials in Eq. (5), including the last one
at =m M , is also a polynomial of degree M, and we can refer to
methods using them as polynomial approximation. It will be found that
Chebyshev polynomials for the f h( )m are particularly useful.

There are three problems here with the approximation: the rapid
variation of data at the low flow end, the large range of discharge Q,
and the ability of the approximating functions to describe arbitrary
variations. These problems will be overcome, as is now described.

2.1. Exponent ν

2.1.1. Usual adequacy of =ν 1/2
Traditionally, the power function has often been required to model

all the data. By writing it in the form of Eq. (4), = +Q a a hν
0 1 , while it

incorporates the usual rapid variation and large curvature on Q h( , )
axes at low-flows, it is obvious that it is a limited approximation to the
whole rating curve problem. Concerning the actual value of ν to use,
Report I (Fig. 2) showed that for each of seven different stations,
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