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A B S T R A C T

Random walk path methods including walk on spheres and walk on rectangles have been used to solve elliptic
and parabolic partial differential equations (PDEs). These methods are able to provide not only the pointwise
solutions to the linear PDEs but also contributions of boundaries and all source/sink terms as an analytical
solution does. However, due to difficulty in dealing with heterogeneity, these methods cannot be applied to
groundwater flow problems in highly heterogeneous aquifers. A novel method called walk on grid (WOG) is
proposed based on lattice random walk to overcome the difficulty. WOG algorithm is verified in a 1D homo-
geneous transient problem, a 1D heterogeneous steady-state problem, a 2D heterogeneous transient problem and
a 3D optimization problem. It is demonstrated that WOG is effective in solving groundwater flow problems in
highly heterogeneous confined aquifers. Probabilities of walkers arriving at prescribed boundaries (terminal
weights) and source counts may be useful for characterization of medium heterogeneity. WOG method sheds a
new light on solving the PDEs of complicated groundwater problems in a changing environment and on ana-
lyzing medium heterogeneity.

1. Introduction

In groundwater modelling, researchers generally use a set of gov-
erning equations to describe physical processes like water flow, solute
or heat transport and so on. Most if not all of these governing equations
are PDEs of diffusion type, which often have to be solved through
analytical or numerical approaches. Analytical solutions are able to
provide comprehensive information of variables in the spatial/temporal
domain under study including contributions from each component in
the model. Unfortunately, analytical methods strongly rely on models’
simplification (often oversimplification) of reality and substantially
impose remarkable restrictions on range of application. When analy-
tical solutions are unavailable, hydrogeologists resort to numerical
methods e.g. finite difference (FDM) and finite element methods (FEM)
for approximate solutions. Traditional numerical methods solve the
governing equations for values of variables which hardly allow one to
explicitly check the contributions of model components (source terms,
boundary or initial conditions) in those values without assistance of
additional tools e.g. sensitivity analysis.

Random walk path method is a PDE-solving method that solves el-
liptic and parabolic PDEs via random walk simulation. Based on
Feynman-Kac formula, it expresses the pointwise solutions in form of
linear combinations of prescribed conditions and source/sink terms.

It is noteworthy to distinguish this method with particle tracking
method. Though based on random walk (Brownian motion) as well, the
widely-documented particle tracking method (LaBolle et al., 1996;
Valocchi and Malmstead, 1992; Ramirez et al., 2008; among many
others) is substantially different from the random walk path method on
mathematical bases. The particle tracking method is sometimes known
as random-walk particle method or random walk method. To avoid
confusion, we refer to it as particle tracking method and the method
demonstrated in this paper is termed random walk path (RWP) method.
The particle tracking relies on similarity between advection-diffusion
equation and Fokker–Planck equation (LaBolle et al., 1996), or more
precisely Smoluchowski equation (Risken, 1984). It is based on “snap-
shotting” of a large number of particles and known as one of Lagrangian
methods to solve solute transport problems. Fokker-Planck equation is
also known as Kolmogorov forward equation (KFE), which describes
time evolution of probability density after time t, given that probability
density at time t is known. In contrast, Kolmogorov backward equation
(KBE), the adjoint of KFE, traces back the historical probability density
before time t under the condition of an occurrence at location x and
time t. KBE directly results in Feynman-Kac theorem and RWP method
is an application of the theorem. Interested readers are referred to lit-
erature on stochastic differential equations, e.g. Kallianpur and Sundar
(2014) for rigorous formulations and proofs behind KBE and KFE.
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Below it will be shown that RWP method relies on trackback of many
random paths linking a single point with prescribed boundaries.
Feynman-Kac theorem and implementation of RWP will be explained
below in context of groundwater flow simulation.

First scheme of RWP method (random walk on spheres, WOS) was
proposed by Muller (1956) to solve the Laplace equation with Dirichlet
boundaries. Muller’s method is efficient for elliptic (steady-state)
equations but not for parabolic equations due to difficulty in simulating
the first exit time (i.e. the moment the walker stops at terminals). Later,
walk on rectangles (WOR) was used to overcome this difficulty
(Milstein and Tretyakov, 1999) but preferably applicable to problems
with boundaries of polygonal shape (Deaconu and Lejay, 2006). Some
applied WOS and WOR to simulate pressure in dual-porosity media
(Campillo and Lejay, 2002), evaluating some physical properties of
large molecules such as reaction rates and electrostatic energy
(Mascagni and Simonov, 2004), estimate effective permeability based
on pore geometry (Simonov and Mascagni, 2004) and so on. Both WOS
and WOR work in the grid-free spatial domain but time is discretized to
steps. That is, a temporally stepwise random walk occurs in a spatially
continuous domain. Since the walk path is not subject to predetermined
discrete grid, in theory the walker may make a huge step in a single
move and exit the domain quickly. It allows the walker completing a
walk path fast and reduces computational cost in homogeneous media.
In heterogeneous media, it is much harder to simulate random walks.
Bhattacharya and Gupta (1984) studied simulation of random walk in a
cylinder with smoothly-varying properties, the result of which is quite
limited to simple problems. As to a single interface of discontinuity,
some models such as skew Brownian motion (Itô and McKean, 1963,
1974; Etore, 2006; Ramirez et al., 2008) can be used to handle layered
media. If the medium shows heterogeneity of irregular shape, the
walker has to be replaced to a new position according to medium
heterogeneity every time the walker passes an interface of parameter
discontinuity (Lejay and Martinez, 2006; Lejay and Marie, 2013; Lejay
and Pichot, 2012). Some studies attempted to apply WOS in bi-material
problems (Lejay and Pichot, 2016; Maire and Nguyen, 2016). When the
medium is highly heterogeneous, the interface passage may occur in
uncertain high frequency and the aforementioned replacement is ex-
tremely hard and impractical. Besides, how to handle various boundary
conditions (including pure Neumann, mixing, Robin boundaries) has
recently been studied (Maire and Tanré, 2012; Maire and Nguyen,
2016). For these reasons, RWP method has not been tested or in-
vestigated in subsurface modelling which deals with complex compo-
nents including high heterogeneity, various boundary conditions, time-
variant sink/source terms in practical problems. In this study a novel
RWP scheme called walk on grids (WOG) based on lattice random walk
is proposed. The objectives of this study include summarizing the the-
oretical background of RWP methods and ways of dealing with various
boundary conditions, introducing the implementation of WOG method
in groundwater modelling context, and preliminarily demonstrating the
capability of WOG solution in groundwater modelling and manage-
ment.

The rest of this paper is organized as follows. In Section 2, the
theory and implementation of RWP method are introduced. In Section
3, we conduct a series of experiments (one-/two-/three-dimensional,
homogeneous/heterogeneous, steady-state/transient problems) to ex-
plore the capability of WOG. The experimental results are discussed in
Section 4 and conclusions are drawn in Section 5.

2. Methodology

2.1. Formulation of the problem

The basic governing equation for transient groundwater flow in
confined and isotropic aquifers is
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where x is a spatial vector. K x( ) is the location-dependent hydraulic
conductivity. w tx( , ) is the source/sink term. Ss is specific storage. D is
the aquifer domain. ΓD and ΓN are Dirichlet and Neumann boundaries,
respectively. n is the outward length normal to the boundary ΓN. We
would like to solve this equation via Monte Carlo method in the domain
D. What we are interested in is not only the certain value of h tx( , ) but
also the explicit contribution of H x( )0 , H tx( , )D , q tx( , ) and w tx( , ) in
h tx( , ).

2.2. Theoretic basis of RWP method

2.2.1. The link between PDEs and random walk
Consider a simple 1D Laplace equation: =uΔ 0. Assume that the

values at points i− 1 and i+2 ( −ui 1 and +ui 2) are already known and
that one wants to solve the equation at point i on a uniform grid (see
Fig. 1 below). Intuitively, one can express the approximate solution ui
in terms of −ui 1 and +ui 2. According to the original equation, one has an
approximation (second-order central difference) + − ≈− +u u u( 2 ) 0i i i1 1

and + − ≈+ +u u u( 2 ) 0i i i2 1 , that is,

⎧
⎨
⎩

≈ +

≈ +

− +

+ +

u u u

u u u

i i i

i i i

1
2 1

1
2 1

1
1
2

1
2 2 (2)

And one can easily solve the equation set to obtain
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Or in more general form,
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where uk
(T) denotes known values (at prescribed boundaries); the sub-

script (T) stands for “terminal”, which terminates the chains of un-
knowns by known values; here = −u ui1
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Eqs. (2)-(4) can be understood in perspective of probability (though
it seems totally irrelevant to any randomness). Assume Ui to be a
random variable at point i, and that the probability of = −U Ui i 1 is

=−p
1
2 and the probability of = +U Ui i 1 is =+p

1
2 ; similar for point i+1.

We can define a random walk on a domain shown in Fig. 1 based on
these probabilities: at points i or i+1, a walker can move to left or
right with probability −p and +p , respectively; and the walker will
continue moving based on “either-or” operation until it reaches point
i− 1 or i+2 (i.e. it arrives at any terminal and exits the domain). The
walkers stops because the random variable equals a known value in-
stead of another random variable, i.e. = −U ui i 1 at point i− 1 and

= +U ui i 2 at point i+2. It can be easily shown by statistics that the
walker stops at point i− 1 with probability 2

3
(i.e. “exit probability” or

“hitting probability” r1) and stops at point i+2 with probability 1
3
(i.e.

“exit probability” r2). In the sense of probability,
= < > = +− +u U u ui i i i

2
3 1

1
3 2, which is exactly Eq. (3). 〈 〉 denotes ex-

pectation. The coefficient rk represents the (conditional) probability

Fig. 1. A uniform grid. Knowns and unknowns are denoted by black and red
dots, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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