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A B S T R A C T

Simulation of variably saturated soil water flow requires the use of pressure head, or soil moisture, or a switching
between the two, as the primary variable for solving Richards’ equation. Under unfavorable conditions, such as
heterogeneity, rapidly changing atmospheric boundary, or sudden infiltration into dry soils, the traditional non-
switching method suffers from numerical difficulties. Solving this problem with a primary variable switching
method is less preferred due to the mathematical complexity. While the Picard method is more popular for
solving the non-switching models due to its simplicity and stability, two different forms of Richards’ equation are
combined into one numerical scheme for switching under specific hydraulic conditions. The method is suc-
cessfully implemented in a one-dimensional model solved by a Picard iteration scheme. A threshold saturation
based on the soil moisture retention relation is used for switching between either form of the Richards’ equation.
The method developed here is applicable for simulating variably saturated subsurface flow in heterogeneous
soils. Compared with traditional methods, the proposed model conserves mass well and is numerically more
stable and efficient.

1. Introduction

The Richards’ equation (RE, (Richards, 1931)) is considered the
only basis for accurate and physically-based solutions for modeling the
sub-surface flow (Farthing and Ogden, 2017). However, the significant
non-linearity of moisture retention curves has led to major efforts to
improve the generality and efficiency of algorithms for solving RE, ei-
ther analytically (White and Broadbridge, 1988), or numerically
(Forsyth et al., 1995; Ross, 2003; Zha et al., 2017). In spite of the
limitations of analytical methods (Crevoisier et al., 2009), numerical
schemes for solving different forms of RE still suffer from problems of
robustness and accuracy (Krabbenhøft, 2007; Ross, 2003; Zha et al.,
2017, 2013a,b), particularly for infiltration into dry soils with a sharp
wetting front, rapidly changing atmospheric upper boundary condi-
tions, as well as heterogeneous soils.

The primitive form of the one dimensional RE, also called the
mixed-form RE, is derived from the mass balance equation
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where θ [L3L−3] is the volumetric soil moisture content, t [T] is the
time, z [L] is the spatial location (positive downward), and q [LT−1] is
the vertical Darcian flux, h [L] is the pressure head, K [LT−1] is the
hydraulic conductivity. Generally, Eqs. (1) and (2) contribute to the
mixed form RE, in which the pressure head (h) serves as the driving
force variable, and soil moisture (θ) as the accumulation variable
(Krabbenhøft, 2007). To be solved numerically, either θ or h is pre-
ferentially taken as the primary variable. When the Darcian flux (Eq.
(2)) is substituted with q=−D·∂θ/∂z+ K, where D [L2T−1] is the
hydraulic diffusivity, the conventional θ-form RE results
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Alternatively, by replacing the storage term in Eq. (1) with ∂θ/
∂t= C·∂h/∂t, where C [L−1] is the soil capacity (C= ∂θ/∂h), the h-form
RE follows:
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The θ-form RE is inherently mass conservative and less non-linear
(Warrick, 1991) in the inter-nodal averaged hydraulic diffusivity D,
especially for dry soil conditions, thus reducing the numerical diffi-
culties. Furthermore, in terms of experimental measurement, available
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devices for monitoring soil moisture are directly applicable for model
calibration and parameter estimation (Robinson et al., 2008). However,
models based on θ-form RE cannot properly account for the inter-nodal
flux terms when there are saturated nodes or in heterogeneous soils
(Crevoisier et al., 2009; Kirkland et al., 1992; Zha et al., 2013b). Al-
though improved approximation of flows in heterogeneous soils have
been achieved (Matthews et al., 2004; Schiesser, 1991; Zha et al.,
2013b), the θ-form methods cannot deal with saturated soils or mixed
unsaturated/saturated situations.

In contrast, the h-form methods are more general for variably sa-
turated flow simulation, especially in heterogeneous soils. However,
they usually lead to serious mass balance errors (Celia et al., 1990).
With Celia’s mass balance scheme, some popular codes/software
packages based on the h-form RE have been developed (Šimůnek et al.,
2009; van Dam et al., 2008). Nevertheless, such mass balance errors are
largely determined by the iteration closure criteria. Furthermore, in the
h-form model, the nonlinearity of both the soil water capacity C(h) and
the hydraulic conductivity K(h), as well as the non-monotonicity of
C(h), contribute jointly to instabilities when simulating infiltration into
dry soil (Zha et al., 2017).

To reduce the nonlinearity of the head in the unsaturated zone while
preserving model generality, a so-called primary variable switching
technique has been proposed by taking either h or θ as the primary
variable, depending on the saturation of the numerical nodes (Diersch
and Perrochet, 1999; Forsyth et al., 1995). Under a Newton’s iteration
framework, the primary variable switching technique takes the deri-
vative of the discretized equation set with respect to h for saturated
nodes, or with respect to θ for unsaturated nodes (Brunner and
Simmons, 2012; Diersch and Perrochet, 1999; Forsyth et al., 1995;
Krabbenhøft, 2007; Wu and Forsyth, 2001). The resultant Jacobian
matrix is used to solve the equation set with increments of primary
variables (Δh or Δθ) as unknowns. After solving the increments, the
primary variables and their corresponding secondary variables are
updated, and the simulation proceeds. However, such an algorithm
inevitably causes non-smooth transitions between alternative primary
variables, which potentially produce unrealistic solutions (Krabbenhøft,
2007; Zha et al., 2017). Although improvements were made to mini-
mize such deficiencies (Hassane Maina and Ackerer, 2017; Kees and
Miller, 2002; Krabbenhøft, 2007), the schemes tend to be problem
specific. Additionally, the proposed switching method has been re-
stricted to Newton’s iteration methods. Although more robust and with
higher-order convergence than the Picard method (Paniconi and Putti,
1994), Newton’s method increases algebraic complexity and computa-
tional costs for assembling the derivative terms in the Jacobian matrix
(Krabbenhøft, 2007; Paniconi and Putti, 1994). Several popular nu-
merical codes of RE, such as HYDRUS (Šimůnek et al., 2008) and SWAP
(van Dam et al., 2008), are designed for Picard method.

Based on the above, a generalized method that reduces the non-
linearity of the head in the unsaturated zone while keeping model
generality is developed in this paper. We directly start from the h-form
RE (Eq. (4)) for saturated regions while the θ-form RE (Eq. (3)) for
unsaturated regions. The numerical discretization of a computational
element bounded by two nodes is handled by combining the h- and θ-
form REs at the equation level. The resulting numerical model uses head
and moisture as unknown variables for saturated and unsaturated nodes
respectively. From an implementation perspective, the proposed
method is more general since it can be used in both Picard and Newton
iteration schemes. Moreover, to alleviate the non-smooth transition
between alternative primary variables (Krabbenhøft, 2007), a threshold
effective saturation of Secrit is employed to regulate the primary variable
switching within the Picard iteration scheme.

The paper is arranged as follows: the generalized numerical scheme
for switching between the two governing REs is given in Section 2;
examples of its use in numerical experiments is presented in Section 3,
where a remarkable increase in model robustness is achieved using the
proposed method. Results and discussion are in Section 4 and

conclusions are reached in Section 5.

2. Numerical formation

2.1. Numerical solution of Richards’ equation

The generalized RE in two different forms is derived by combining
Eqs. (3) and (4) into
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where Φ is the primary variable for two different forms of RE. The ef-
fective saturation at each node, Se, is used to determine the form of RE
at node i. When Se > Secrit, an h-form RE is taken as the governing
equation, thus we get Φ= h, ̂ =K K , and β= C; or else when Se <
Secrit, a θ-form RE is used, then Φ= θ, ̂ = =K D K C/ , and β=1. The
switching threshold Secrit is of great dependence on the soil parameters
and hydraulic conditions near the dry-wetting front. In our work, a
range of empirical Secrit from 0.4 to 0.99 are suggested.

At spatial location z and time t, the Dirichlet and Neumann
boundary conditions are described by
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where Φ0 and q0 [LT−1] are respectively the known value of the pri-
mary variable and inter-nodal flux.

With a vertex-centered finite-difference grid and a backward-Euler
finite-difference stepping scheme, the spatial and temporal parts in Eq.
(5) are integrated into the matrix equations as follows
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where the superscript j denotes the time level, +tΔ j 1 is the current time
step, = −+ +t t tΔ j j j1 1 ; A is a symmetrical tri-diagonal matrix assembled
by = ∑A Ae e, where Ae is the element stiffness matrix, at element
i− 1/2,
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B is a diagonal matrix for storage terms assembled by = ∑ BB i i, at node
i,
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and F is a vector for gravity and sink/source terms assembled by
= ∑F Fe e. The component from element i− 1/2 is represented by
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where Δzi=(zi+1− zi−1)/2 is the size of control volume of the vertex-
centered node i; Δzi−1/2= zi− zi−1 is the size of the finite element
bounded by nodes i− 1 and i; ̂ ̂ ̂= +− −K K K( )/2i i i1/2 1 is the inter-nodal
average hydraulic parameter, when Sei > Secrit, ̂ =K Ki i, while when
Sei < Secrit, ̂ =K Di i; Specifically, Ki−1/2 in Eq. (10) is the inter-nodal
average hydraulic conductivity for element i− 1/2, Ki−1/

2= (Ki+Ki−1)/2. When using an h-form RE, the Celia format (Celia
et al., 1990) for temporal discretization is employed to conserve mass.

Solving Eq. (7) with a quadratic-convergence iteration scheme
(Newton’s scheme) leads to

′ − + =+ + + + +f Φ Φ Φ f Φ( )( ) ( ) 0j k j k j k j k1, 1, 1 1, 1, (11)

where k is the iteration level, and ′ +f Φ( )j k1, is the Jacobian matrix, its
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