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A B S T R A C T

Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this
study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic
monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and
the Baum–Welch algorithm is then executed to learn the model parameters. GMR derives a conditional prob-
ability distribution for the predictand given covariate information, including the antecedent flow at a local
station and two surrounding stations. The performance of HMM–GMR was verified based on the mean square
error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by ex-
amining the uniformity of the probability integral transform values. The results show that HMM–GMR obtained
reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to
be different climate conditions, which would lead to different types of observed values. We demonstrated that
the HMM–GMR approach can handle multimodal and heteroscedastic data.

1. Introduction

Streamflow forecasting plays a critical role in water resources
planning and management (Chiew et al., 2003; Zhao and Zhao, 2014).
Reliable and skillful streamflow forecasts can help water resource
managers to make better decisions, as well as promoting the sustainable
development of the local economy. The existing approaches for
streamflow forecasting are classified into three main categories: phy-
sical based models, conceptual methods, and empirical models (Bourdin
et al., 2012; Devia et al., 2015). The early empirical models were
usually linear, such as autoregressive, autoregressive moving average
and Linear Regression (Castellano-Méndez et al., 2004; Haltiner and
Salas, 1988; Salas et al., 1985; Valipour et al., 2013; Wu et al., 2009).
However, these models have a limited ability to handle the non-sta-
tionary and non-linear relations massively involved in hydrological
processes (Zhang et al., 2015). In addition to the conventional linear
statistical techniques, a wide range of machine learning methods have
been developed and used for hydrological forecasting. The two most
commonly used machine learning methods applied in the hydrologic
community are the artificial neural network (ANN) (McCulloch and
Pitts, 1943; Kohonen, 1988; Chiang et al., 2004; Cigizoglu, 2005; Mutlu
et al., 2008) and support vector machine (SVM) (Vapnik, 1995;

Collobert and Bengio, 2001; Dibike et al., 2001; Wu et al., 2009).
The reliable quantification of forecast uncertainty is also very im-

portant for water resource management. SVM and ANN are both point
forecast algorithms and they cannot provide information about the in-
trinsic level of forecast uncertainty. One approach for quantifying this
uncertainty involves obtaining estimates of upper and lower bound
prediction intervals, which indicate the range within which the ob-
served data are likely to occur with some probabilistic level of con-
fidence (such as 90%) (Ye et al., 2014; Ye et al., 2016). The Bayesian
technique is another approach for a direct quantification of prediction
uncertainty, where it estimates the posterior distribution based on the
prior probability and likelihood (Murphy, 2012). For example, the
Bayesian joint probability method has been employed for monthly and
seasonal streamflow forecasting (Wang et al., 2009; Wang and
Robertson, 2011; Zhao et al., 2016), where this method assumes that
the data are multivariate Gaussian and it mainly focuses on learning the
parameters of an enhanced Box–Cox transform using Monte Carlo
Markov chain sampling. However, the Bayesian joint probability
method does not consider the potential climate states in the model.
Different climate states will influence the rainfall runoff process so it is
important and meaningful to consider the potential states and their
variations during streamflow forecasting.
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Hidden Markov models (HMMs) (also known as Markov switching
models or dependent mixture models) comprise a discrete-time, dis-
crete-state Markov chain with hidden states plus an observation model,
which can describe the potential states in a catchment. Previously, it
has been reported that HMM is a robust method for simulating hydro-
logic time series. The hidden states of hydrologic time series are typi-
cally described as climate regimes. Akintug and Rasmussen (2005) in-
vestigated the properties of HMM for generating annual time series. A
HMM was also developed to generate runoff scenarios and rainfall data
respectively (Gelati et al., 2010; Sansom and Thomson, 2010). A HMM
combined with climate indices was proposed for multidecadal stream-
flow simulation (Bracken et al., 2014). However, extensions of HMM
are still needed for probabilistic monthly streamflow forecasting.
Gaussian Mixture Regression (GMR) is an alternative method to obtain
a predictive distribution from a joint distribution for a HMM, although
it is generally used for mixture models. In contrast to other regression
methods such as SVM and ANN, GMR does not model the regression
directly, but instead it models a joint probability density function of the
data and then derives the regression function from the joint density
model (Carreau et al., 2009; Calinon et al., 2010; Lee et al., 2016). This
is an advantage for streamflow forecasting since density estimation can
handle different sources of missing data, non-concurrent data and data
with many occurrences of zero flows (Wang et al., 2009; Zhao et al.,
2016). Compared HMM with an unconditional mixture model (Calinon
et al., 2007), it can be interpreted as an extension of a mixture model
where the choice of mixture component for each observation is not
selected independently but instead it depends on the choice of com-
ponent for the previous observation.

In this study, we considered a framework that combines HMM and
GMR (HMM–GMR) for monthly streamflow forecasting. The main
outcomes of this study are as follows. (1) We used a kernelized K-me-
doids clustering technique as a stable initialization strategy to avoid the
model becoming trapped by poor local minima. (2) We extended GMR
by recursively computing a likelihood through the HMM representa-
tion, thereby considering the predictors as well as the sequential in-
formation probabilistically encapsulated in the HMM. (3) We verified
the effectiveness of HMM–GMR based on Yichang station in the up-
stream region of Yangtze River by using a monthly streamflow series,
where we mainly focused on the forecast reliability and skill.

The remainder of this paper is organized as follows. In Section 2, we
introduce the model formulation, the learning algorithm for HMM and
GMR for probabilistic forecasting. In Section 3, we explain the forecast
verification methods. In Section 4, we present an application of
HMM–GMR to forecasting streamflows at three hydrological stations in
the upstream region of the Yangtze River in Chain. In Sections 5 and 6,
we discuss our results and give our conclusions, respectively.

2. Methods

2.1. HMM

A HMM comprises a discrete-time, discrete-state Markov chain with
hidden states ∈ …z K{1, , }t , plus an observation model p x z( | )t t . Where t
stands for the time indices and ⩽ ⩽t T1 . The probability of zt depends
on the state of the previous latent variable zt−1 via a conditional dis-
tribution p(zt|zt−1). The latent variables may be represented as K-di-
mensional binary variables with K-1 0’s and a single 1 at position k
indicating the state value, so this conditional distribution corresponds
to a table of numbers, which we denote by A and its elements are
known as transition probabilities:
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The transition matrix is illustrated diagrammatically by drawing the

states as nodes in a state transition diagram, as shown in Fig. 1 for the
case where K=3.

In this formulation, the observed sequence xt depends on the current
hidden state zt. Thus, the conditional distributions of the observed
variables are defined as =p x z k ϕ( | , )t t k , where ϕ is a set of parameters
that govern the distribution. We consider d variables comprising both
monthly streamflows to be forecast and their predictors such as climate
and catchment indicators:

= ⋯x x x x[ ]T d1 2 (2)

In this study, the distribution of the observations of each state is
represented as a multivariate Gaussian:
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where μk is the mean vector and ∑k is the covariance matrix, and one
way of estimating the parameters is the maximum likelihood estimate
(MLE), as follows.
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The joint probability distribution over both the latent and observed
variables is then given by:
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where = … = …x x z zX Z{ , , }, { , , }T T1 1 , and =θ π ϕ{ ,A, } denotes the set of
parameters of HMM. πk is the initial probability of being in state k, Aij is
the transitional probability from state i to state j, and

= ∑ϕ μ{ , }k k k ,where μk and ∑k represent the center and the covariance
matrix of the kth Gaussian distribution of the HMM, respectively.

2.2. Learning for the HMM

We now explain how to estimate the parameters =θ π ϕA{ , , }. The
Baum–Welch algorithm (Baum et al., 1970), which is a variant of the
expectation maximization (EM) algorithm, is used to learn the para-
meters. In the same manner as the EM algorithm, we must be careful

Fig. 1. Transition diagram of a Markov chain with three possible states.
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