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A B S T R A C T

In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically
developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable
of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant pre-
dictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient
input selection technique is crucial for decreasing model data requirements. Then, the interconnection between
global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional
predictors to comprise information regarding ET0, which ought to be provided by meteorological data un-
available. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the
partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets.
The teleconnection analysis identifies the correlation between Nino 1+ 2 and regional ET0, indicating influ-
ences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1+2
as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-
linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models
(MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance
depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and in-
corporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting
models suitable for data-scarce regions.

1. Introduction

Evapotranspiration is a crucial component in the hydrological cycle,
simultaneously transferring water from land, oceans and plants to the
atmosphere through evaporation and transpiration (Tabari et al.,
2013). Estimating the reference evapotranspiration (ET0) is essential for
engineering applications like the irrigation scheduling as well as sci-
entific research like the hydrological modelling. The FAO-56 Penman-
Monteith (FAO-PM) equation (Allen et al., 1998) is recommended by
the Food and Agriculture Organization (FAO) to be a standard model
for estimating ET0. Benefiting from a solid physical foundation, the
FAO-PM equation with related adjustments can be used as a good es-
timator (Jato-Espino et al., 2016). Its main drawback, however, lies in
its relatively high data requirement, which limits its application in
many regions, especially in the least economically developed countries,
where sufficient meteorological stations and reliable observations are
often unavailable (Droogers and Allen, 2002). Therefore, it is of im-
portant significance to develop alternative models with lower data

burden and computationally suitable for forecasting ET0 in data-scarce
regions.

The aforementioned limitation of the FAO-PM equation has led re-
searchers to turn to numerous empirical models with reduced data re-
quirements. Empirical models mainly include temperature-based
(Hargreaves, Blaney-Criddle and Thornthwaite) equations and radia-
tion-based (Priestley-Taylor, Makkink and Jensen-Haise) equations,
some of which the FAO-PM equation evolved from. As no universal
consensus has been achieved on their global applicability, additional
parameter estimation is an indispensable step in applying empirical
models to different climatic conditions (Droogers and Allen, 2002;
Nandagiri and Kovoor, 2006). The other category of alternative models
manages to capture the mapping relationship between selected inputs
and ET0 by means of statistical methods or artificial intelligence ap-
proaches covering from multiple linear regression, autoregressive
moving average and support vector regression (Jato-Espino et al., 2016;
Psilovikos and Elhag, 2013; Tabari et al., 2012; Cheng et al., 2016) to
various neural networks and evolutionary algorithms (Falamarzi et al.,
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2014; Shiri et al., 2014; Traore et al., 2016; Fang et al., 2017). For all
these models, identifying the optimal input is a fundamental task and is
a necessity to reduce the model data requirements. The conventional
solution is to test several input combinations comprising only a portion
of the meteorological variables available and then derive the optimal
input set according to predetermined evaluation criteria (Parasuraman
et al., 2007; Partal, 2016; Traore et al., 2016). Though a computa-
tionally efficient searching strategy, examining a fraction of all possible
combinations instead of an exhaustive search still leaves doubt as to
whether there are some combinations with lower data requirements
outperforming the ‘optimal’ input set selected. The other strategy for
screening model inputs is based on calculating the linear correlation
coefficient, which statistically quantifies the linear dependence be-
tween each meteorological variable and ET0 (Jain et al., 2008; Kişi,
2006). Meteorological variables with strong linear correlation with ET0

are included in the model input set. This strategy, however, is argued to
likely select redundant inputs that provide the same amount of in-
formation regarding ET0. Afterward, the partial linear correlation is
introduced to further eliminate the redundant information from the
input set (Mallikarjuna et al., 2012). On the other hand, evapo-
transpiration is universally considered a nonlinear process dependent
on interacting climatological variables. As a result, the nonlinear dy-
namics of the evapotranspiration process may not be well captured by
only examining the linear correlation.

To this end, entropy and mutual information (MI), two important
notions in information theory, are introduced to quantify more general
(both linear and nonlinear) dependence. Entropy is known to be a
measure of uncertainty for given variables and it is through the notion
of entropy that MI is derived (Quilty et al., 2016). MI, also termed
transinformation, is defined as the information content of one variable
that is also contained by another variable and is formulated as the
difference between total entropy of the two random variables and their
joint entropy (Ahmadi et al., 2009; Yang et al., 2000). Ahmadi et al.
(2009) and Nourani et al. (2015) have applied these two information-
content-based criteria (namely, entropy and MI) to input selection for
solar radiation estimation and rainfall-runoff modelling, respectively.
Evaluating entropy and MI makes it possible for input selection to
consider both linear and nonlinear dependence between input candi-
dates and model output. However, as in the case of selecting input
through the linear correlation coefficient, there is a disadvantage when
using entropy and MI to screen meaningful inputs. This is, an input
strongly correlated with the model output might provide redundant
information that has been explained by previously selected inputs. To
overcome this shortcoming, Sharma (2000) proposed partial mutual
information (PMI) for evaluating the additional mutual information
attained by adding a potential input to the model input set. In this
study, the utility of the partial mutual information to identify relevant
predictors for ET0 is investigated and is compared with that of the
partial linear correlation.

The past two decades have witnessed an increasing number of stu-
dies on the interconnections between hydrological variables and global
climate patterns at multiple timescales. For precipitation, streamflow
and groundwater levels, numerous research has identified their delayed
response to variability in climatic indices, such as the North Atlantic
Oscillation (NAO), Southern Oscillation Index (SOI) and Pacific-North
American pattern (PNA) (Cai et al., 2010; Coleman and Budikova,
2013; Tremblay et al., 2011, Huang et al., 2018, Liu et al., 2018). Wang
et al. (2006) revealed the strong influence of El Niño–Southern Oscil-
lation (ENSO) events on regional precipitation in the Yellow River
Basin, China, which resulted in a 51% decrease in runoff to the sea.
Zhang et al. (2007) reported the spatially changing (in-phase or anti-
phase) interconnection between ENSO and the annual maximum
streamflow from the upper to the lower Yangtze River Basin, China. It
was found by Xu et al. (2007) that approximately 20% of 481 gauging
stations in China showed a significant correlation between precipitation
and SOI, and a more negative correlation than positive was observed.

Such interconnections have been exploited by forecast practices invol-
ving these hydrological variables successfully (Fan et al., 2015; Schepen
et al., 2012; Yang et al., 2017). With respect to ET0, Meza (2005) found
that ET0 variation in the Maipo River Basin, Chile, was influenced by
phases of ENSO, concluding that during the winter and spring, there
was up to a 30% difference in ET0 between the El Niño and La Niña
years. Sabziparvar et al. (2011) analysed the ET0-SOI interconnection at
13 meteorological station sites in Iran. At most of the studied sites,
winter and spring ENSO events influenced the ET0 values of the fol-
lowing summer and autumn. Spatially, more significant impacts of
ENSO forcing on ET0 variability were observed at warm arid sites than
at humid sites. Tabari et al. (2014) examined the ET0-NAO inter-
connection during winter at 41 Iranian meteorological stations. The
results disclosed the negative correlation between winter ET0 and NOA
index, and a negative phase of NAO led to a 3% increase in ET0 values
relative to those during a positive phase. In spite of studies reporting
the apparent interconnection between regional ET0 and global climate
patterns, little attention has been paid to incorporating influential cli-
matic indices into ET0 forecasting practices. Therefore, this study em-
ploys global climatic indices as additional potential inputs of fore-
casting models to analyse their correlation with ET0 in the study area
and investigate their role in yielding a higher forecasting accuracy. The
merit lies in that these climatic indices can be easily acquired from
related research institutions and do not increase the data collection
burden, and they can be universally applied to regions with meteor-
ological data scarcity.

This study aims to (1) investigate the utility of partial mutual in-
formation to identify meaningful predictors for ET0 through a com-
parison with the partial linear correlation, which merely measures the
linear dependence; (2) recognize the interconnection between global
climate indices and regional ET0; and (3) recommend the optimal ET0

forecasting models having both favourable performance and lower data
requirements for regions subject to data scarcity. An appropriate input
variable selection (IVS) technique benefits models through effectively
decreasing the data requirements. In addition, introducing climatic
indices may favour the explanation of variability in ET0, which ought to
be interpreted by the missing meteorological variables. Therefore, the
study could have important implications for developing ET0 forecasting
models suitable for the least economically developed countries.

2. Model developments

2.1. An overview of ET0 forecasting models

The procedure for developing ET0 forecasting models is organized
into four parts, which are depicted in Fig. 1.

2.1.1. Input candidate pools
Scenario 1 is utilized to compare the utility of the partial mutual

information and partial linear correlation to screen predictors for ET0.
Under Scenario 1, the input candidate pool comprises all local me-
teorological variables characterizing variations in air temperature, air
pressure, precipitation, humidity, solar radiation and wind speed. It is a
prevailing means of composing the input candidate pool and has been
used in many previous studies (Chatzithomas and Alexandris, 2015;
Kumar et al., 2002; Tabari et al., 2012). Scenario 2 further comprises
global climatic indices, in addition to the meteorological variables of
Scenario 1, and can provide a comparison with Scenario 1 for in-
vestigating the effectiveness of climatic indices in enhancing model
performance. Scenario 3 is used for developing ET0 forecasting models
suitable for the least economically developed regions. With considera-
tion of the meteorological data scarcity in many such regions, the input
candidate pool under the latter scenario only includes routinely mea-
sured meteorological variables (air temperature and sunshine dura-
tion), which are available at nearly all meteorological stations. Global
climatic indices are further introduced as potential model inputs to
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