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a b s t r a c t

The traditional Alternating Direction Implicit (ADI) scheme has been proven to be incapable of modelling
trans-critical flows. Its inherent lack of shock-capturing capability often results in spurious oscillations
and computational instabilities. However, the ADI scheme is still widely adopted in flood modelling soft-
ware, and various special treatments have been designed to stabilise the computation. Modification of
the Boussinesq coefficient to adjust the amount of fluid inertia is a numerical treatment that allows
the ADI scheme to be applicable to rapid flows. This study comprehensively examines the impact of this
numerical treatment over a range of flow conditions. A shock-capturing TVD-MacCormack model is used
to provide reference results. For unsteady flows over a frictionless bed, such as idealised dam-break
floods, the results suggest that an increase in the value of the Boussinesq coefficient reduces the ampli-
tude of the spurious oscillations. The opposite is observed for steady rapid flows over a frictional bed.
Finally, a two-dimensional urban flooding phenomenon is presented, involving unsteady flow over a fric-
tional bed. The results show that increasing the value of the Boussinesq coefficient can significantly
reduce the numerical oscillations and reduce the predicted area of inundation. In order to stabilise the
ADI computations, the Boussinesq coefficient could be judiciously raised or lowered depending on
whether the rapid flow is steady or unsteady and whether the bed is frictional or frictionless. An increase
in the Boussinesq coefficient generally leads to overprediction of the propagating speed of the flood wave
over a frictionless bed, but the opposite is true when bed friction is significant.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The increasing risk of flooding, especially flash flooding, has
become a prevalent and pressing issue worldwide. Flash floods
involve high flow velocities, which can be very destructive and
pose a serious risk to both infrastructure and human life. Therefore,
it is extremely important that such flooding events can be pre-
dicted accurately.

The horizontal scale of a flood is normally much larger than its
depth. This type of free surface flow problem can be mathemati-
cally described by the Shallow Water Equations (SWEs). These
equations can be derived from the depth integration of the three-
dimensional incompressible Navier–Stokes equations under the

assumptions of hydrostatic pressure distribution and negligible
vertical velocity. With the appropriate initial conditions and
boundary conditions, these nonlinear equations can be solved
numerically. Researchers have developed various numerical mod-
els to solve the SWEs over the past few decades. The Alternating
Direction Implicit (ADI) scheme is one such method which is still
widely used. This scheme was first proposed by Peaceman and
Rachford (1955), after which Leendertse combined the ADI scheme
and a staggered grid and developed a computational model for
two-dimensional flows. The stability domain of this scheme is rel-
atively large, and the balance between computational cost and
accuracy is attractive (Leendertse and Gritton, 1971). However,
Liang et al. (2006a) demonstrated that the ADI scheme is unable
to predict trans-critical and supercritical flows. Two established
approaches are suitable for resolving shocks, such as hydraulic
jumps and bores, in the solution, i.e. shock-fitting and shock-
capturing methods. Shock-capturing methods are preferable since
they utilize a universal strategy over the whole domain without
treating the shocks separately. As for most explicit schemes, time
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steps for shock-capturing schemes are restricted by the CFL
condition.

Currently, the ADI scheme is still widely used in a lot of
commercial and research software, such as Flood Modeller (www.
floodmodeller.com) and Hec Ras (www.hec.usace.army.mil). Two
widely-adopted numerical treatments are available for stabilising
the ADI scheme in simulating rapid flows. One is to introduce artifi-
cial diffusion, and the other is to modify the Boussinesq coefficient.
Physically, the Boussinesq coefficient quantifies the momentum
effect of the non-uniform velocity distribution over the depth.
Because it appears in the advective acceleration term in the SWEs, it
can also be treated as a pure numerical parameter to tune the amount
of fluid inertia to be considered in the simulation. Hence, its link to
the vertical distribution of the velocity can be ignored. Instead, the
Boussinesq coefficient is allowed to be freely tuned to eliminate
the fictitious fluctuations and increase computational stability, just
like the artificial viscosity coefficient. These treatments can partly
mitigate the inherent instability of the ADI model when solving
for trans-critical flows. However, their resultsmay seriously deviate
from the correct solutions to the original SWEs where the Boussi-
nesq coefficient takes the physically-based values of around 1.0.

Although the effect of artificial viscosity on the computational
results has been extensively studied, the influence of the Boussi-
nesq coefficient is not well understood. This paper aims to demon-
strate the impact of changing the Boussinesq coefficient when
simulating rapid flows in various situations. The test cases first
consider the instantaneous one-dimensional (1-D) and the two-
dimensional (2-D) dam-break floods over frictionless flat beds,
with the solutions predicted by a TVD-MacCormack model and
experimental data used as references. Then, steady flow over fric-
tional and irregular beds is simulated. Finally, the paper describes
the applications of the 2-D ADI model to unsteady flood flows over
an actual urban area in Glasgow, Scotland. In all the cases studied,
the flow is either supercritical or nearly supercritical, and thus con-
tains steep water level and velocity variations. This is because,
when the flow is subcritical, the ADI model is capable of predicting
the phenomena accurately with the correct value of b, which is
close to unity. Considering that there is no need to take non-
physical values of b when the flow is slow and smooth, this study
focuses on situations with shocks present in the solutions.

2. Shallow water equations

The three-dimensional Reynolds-averaged continuity and
Navier-Stokes equations are often integrated over the water col-
umn for analysing the flows confined in a thin layer. Utilising the
assumption of the hydrostatic pressure distribution and the kine-
matic boundary condition of the free surface, the resulting equa-
tions are simplified into the SWEs. When neglecting the Coriolis,
viscous and wind forces, the standard SWEs are expressed as:
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where t is time; g represents the water surface elevation above the
still water datum; qx and qy constitute the volumetric discharge
components per unit width in the x and y directions, respectively;
Hð¼ hþ gÞ is the total water column depth, in which h is the depth
below the still water datum; g is the gravitational acceleration; C
represents the Chézy roughness coefficient which is determined
from the Manning formula in this study; b is called the Boussinesq
coefficient – a momentum-correction factor for the non-uniform
vertical velocity profile; t is the viscosity coefficient. For the dam-
break flows, flash floods and other rapid flow phenomena consid-
ered in this paper, the fluid inertia, pressure force and bed friction
are often the dominant factors influencing the flow, whereas the
influence of viscosity is generally insignificant.

Assuming the flow is along the x-direction, then the Boussinesq
coefficient can be defined as:

b ¼
R g
zb
u2dz
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where the flow velocity u is a function of the vertical coordinate z,
and U is the depth-averaged velocity. This momentum correction
factor depends on the velocity distribution over the depth, and
should be always greater than unity. It increases with the increasing
non-uniformity of the velocity distribution over the depth. For a
logarithmic velocity profile, the momentum correction factor can
be expressed as (Goldstein, 1938):

b ¼ 1þ g
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where j is von Kármán’s constant. From the above equation, it can
be seen that the value of b increases with the decrease of the Chézy
coefficient, which signifies an increase in the bed roughness, verti-
cal shearing and velocity non-uniformity. Alternatively, an assumed
seventh-power law velocity profile leads to a constant value for b of
1.016. In many practical modelling studies, the momentum correc-
tion factor is simply set to unity, assuming a uniform velocity distri-
bution. On the other hand, because b appears in the advective
acceleration term in Eqs. (2) and (3), it can also be used to adjust
the amount of fluid inertia to be considered in the computer simu-
lations. For example, the advective acceleration can be completed
ignored by taking b to be zero. Some researchers adjust the Boussi-
nesq coefficient to improve the stability of the ADI-based models,
following an idea similar to the adjustment of the viscosity coeffi-
cient in the numerical simulations. In such cases, the value of b
should be treated as purely artificial, just as the artificial viscosity
coefficient. Physically, the value of b should never be smaller than
unity according to the Eq. (5). However, in the numerical modelling,
the advective acceleration can be completed ignored by setting the
value of b to be zero.

Eqs. (1)–(3) are not in a conservative formulation of the SWEs.
As a set of hyperbolic equations, the SWEs admit discontinuities
in their solutions. In order to maintain the correct motion of the
shocks in numerical prediction, the conservative form of the SWEs
should be deployed to ensure the exact mass and momentum con-
servation in the numerical discretization (Toro, 2001; Liang et al.
2006a).

3. Numerical methods

3.1. ADI scheme

The ADI scheme is widely used in practice to solve the SWEs. In
the ADI scheme, each time step is divided into two half time steps.
In the first half time step, the x-direction terms and derivatives are
discretised using an implicit scheme, while an explicit scheme is
used to approximate the values associated with the y-direction
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