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a b s t r a c t

Reconstruction of missing runoff data is of important significance to solve contradictions between the
common situation of gaps and the fundamental necessity of complete time series for reliable hydrological
research. The conventional empirical orthogonal functions (EOF) approach has been documented to be
useful for interpolating hydrological series based upon spatiotemporal decomposition of runoff variation
patterns, without additional measurements (e.g., precipitation, land cover). This study develops a new
EOF-based approach (abbreviated as CEOF) that conditions EOF expansion on the oscillations at outlet
(or any other reference station) of a target basin and creates a set of residual series by removing the
dependence on this reference series, in order to redefine the amplitude functions (components). This
development allows a transparent hydrological interpretation of the dimensionless components and
thereby strengthens their capacities to explain various runoff regimes in a basin. The two approaches
are demonstrated on an application of discharge observations from the Ganjiang basin, China. Two alter-
natives for determining amplitude functions based on centred and standardised series, respectively, are
tested. The convergence in the reconstruction of observations at different sites as a function of the num-
ber of components and its relation to the characteristics of the site are analysed. Results indicate that the
CEOF approach offers an efficient way to restore runoff records with only one to four components; it
shows more superiority in nested large basins than at headwater sites and often performs better than
the EOF approach when using standardised series, especially in improving infilling accuracy for low flows.
Comparisons against other interpolation methods (i.e., nearest neighbour, linear regression, inverse dis-
tance weighting) further confirm the advantage of the EOF-based approaches in avoiding spatial and tem-
poral inconsistencies in estimated series.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Availability of complete runoff time series is essential for
hydrological studies on such as hydraulic infrastructures design,
water resources management, and flood or drought forecasting.
Unfortunately, there usually exists such a predicament that data
are poorly recorded due to accidental or human-induced causes.
The loss of information resulting from the adverse impact of scarce
records threatens the reliability of hydrological studies, which con-
sequently poses great demands on reconstruction of missing data
(Gottschalk et al., 2015).

Problem of interpolation for gaps in incomplete time series has
long been an interesting topic in hydrologic, environmental, and
other geoscientific studies. Several methods are proposed and
applied successfully within their own applicable scopes, such as
the auto-regression model and its various derivatives (Tencaliec
et al., 2015; Wang et al., 2015), multiple linear regression linking
with simultaneous covariates (precipitation, soil moisture, land
cover, etc.) (Daly et al., 1994), weighting average method based
on spatial proximity between observation and prediction locations
(Arnell, 1995; Kurtzman et al., 2009), spectral analysis
(Kondrashov and Ghil, 2006; Mariethoz et al., 2012), Bayesian
inference (Tingley and Huybers, 2010), copula modelling
(Bárdossy and Pegram, 2014), and the classical methods of objec-
tive analysis like Gandin interpolation (Gandin, 1965) and empiri-
cal orthogonal functions (EOF) approach (Gottschalk et al., 2015).
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In addition to the aforementioned methods, interpolation of miss-
ing data has also been achieved by using process-based
approaches, e.g., running a rainfall-runoff model (Hisdal and
Tveito, 1993; Wagner et al., 2012), or by incorporating artificial
intelligence like artificial neural network (Coulibaly and Evora,
2007; Kim and Pachepsky, 2010) or fuzzy logic theory (Abebe
et al., 2000). It has been widely acknowledged that improvements
for the accuracy of reconstructed time series for a large basin are
still challenging tasks in consideration of the inherent deficiencies
in some existing approaches, such as computational complexity, a
certain level of subjectivity in calibration and validation of models,
or absence of prerequisite for other covariate measurements
(Pappas et al., 2014; Tencaliec et al., 2015). Selection of a suitable
infilling method often depends on the type of interpolated vari-
ables in different disciplines, spatial and temporal distribution fea-
tures of gaps, and application conditions of interpolation
formulation (Gottschalk et al., 2011).

In this paper, reconstruction of missing runoff series is investi-
gated with an emphasis on the EOF approach. In different publica-
tions, this approach is also perceived as principal component
analysis, factor analysis, and Karhunen-Loève expansion in
stochastic approach (Gottschalk et al., 2015). It allows an analysis
of spatiotemporal variation by characterising the variance-covar
iance/correlation structure of runoff series (seen as a random pro-
cess that evolves in space and time) over a common period and
decomposing observed series into a linear combination of orthog-
onal patterns and uncorrelated components (amplitude functions)
in spatial and temporal domain. The determined amplitude func-
tions, invariant across sites in a target region, can be then applied
for a large-scale interpolation of incomplete runoff series, at any
site in this region, for not only intermittent time slices but also suc-
cessively long-term time periods.

The EOF approach, being originally popular in the scientific pro-
gress of meteorology and climatology, has increasingly received
attention in hydrology as a useful tool for, e.g., dimensionality
reduction, pattern recognition of hydrological characteristics, clas-
sification of runoff pattern, description of runoff characteristics
(Gottschalk, 1985; Krasovskaia and Gottschalk, 1995; Krasovskaia
et al., 1999, 2003; Johnston and Shmagin, 2008; Ionita et al.,
2014; Li et al., 2017), and more importantly, as a powerful stochas-
tic interpolation scheme for ‘‘mapping” of river runoff series across
space and time (Creutin and Obled, 1982; Obled and Creutin, 1987;
Hisdal and Tveito, 1992, 1993; Gottschalk, 1993; Krasovskaia and
Gottschalk, 1995; Sauquet et al., 2000, 2008; Beckers and Rixen,
2003; Henn et al., 2013; Gottschalk et al., 2015; Obled and
Braud, 1989). For example, Hisdal and Tveito (1993) compared
the EOF approach with linear regression and hydrological model
for reconstructing daily runoff series from nine basins in southern
Norway and concluded that the EOF approach yielded results as
good as the other two. Beckers and Rixen (2003) interpolated the
incomplete oceanographic datasets based on the ordinary EOF
approach. Henn et al. (2013) studied the EOF approach for filling
in gaps in hourly near-surface air temperature data and found that
the approach was sensitive to the vertical separation of stations
and spatial correlation between them. Gottschalk et al. (2015)
applied the ordinary EOF approach to interpolate the monthly run-
off in the Upper Magdalena River, Colombia for gauging stations
with missing records and for ungauged sites. They pointed out that
the moderately good results in some mountain headwater stations
could be ascribed to the relatively weaker representation of the
amplitude functions at these sites where runoff series might tend
to present irregular variability. Since the amplitude functions are
rarely explained with a clear hydrological meaning, investigation
on how to enhance their physical significance becomes necessary
to improve the capacity for accounting for various runoff regimes
in a basin.

With the above background, the main aim of this paper is to
develop the new algorithm based on the EOF approach, namely,
the conditioned EOF (CEOF) approach, to improve the accuracy of
reconstruction of missing data. The mathematical treatment of this
algorithm is presented in Section 3, following a brief presentation
of the theoretical background of the conventional EOF approach in
Section 2. Section 4 describes how to reconstruct complete time
series using the EOF and CEOF approaches and further employs
other five interpolation schemes for comparisons. All the
approaches are evaluated through an application to monthly dis-
charge observations from the 28 gauging stations in the Gan River
(Ganjiang), China in Section 5. We summarise the study in Section 6
with the discussion and conclusions.

2. Background for empirical orthogonal functions

The theoretical background of the conventional EOF approach is
briefly recalled, supposing an application to river discharge obser-
vations. Readers interested in more details can refer to Gottschalk
et al. (2015). Define the drainage area down to a gauging outlet sta-
tion as the total domain X. The discharge series at the outlet is
denoted by Qðt;XÞ. The denested (non-overlapping) areas
xi; i ¼ 1; . . . ;M related to M gauging sites upstream of this outlet
station are extracted using xi ¼ Ai �

P
sxs so that

PM
i¼1xi ¼ X,

where s denotes all sites upstream of site i and Ai is the drainage
area of site i. When i is a headwater site (without any upstream
site), xi is exactly equal to Ai. The discharge Qðt;xiÞ for a denested
drainage area xi is defined as the net discharge after subtracting
the inflows from upstream areas (except for headwater sites), i.e.,
Qðt;xiÞ ¼ Qðt;AiÞ �

P
sQðt;AsÞ, which can be written as the inte-

gral of flows over space u across this area (smooth variations are
assumed so that the integration can be separated).

Qðt;xiÞ ¼
Z Z

u2xi

Qðt;uÞdu ¼ mQ ðxiÞ þ
Z Z

u2xi

Xðt;uÞdu

¼ mQ ðxiÞ þ Xðt;xiÞ ð1Þ

where Qðt;xiÞ is expressed as the sum of long-term mean value of
the discharge mQ ðxiÞ for a denested area xi and the fluctuations
around this mean, namely the centred discharge series Xðt;xiÞ. In
terms of the EOF expansion, this centred discharge can be linearly
decomposed into double orthogonal series of spatial and temporal
functions:

Xðt;xiÞ ¼
XM
k¼1

wkðtÞbkðxiÞ ð2Þ

where the temporal functions wkðtÞ; k ¼ 1; . . . ;M are known as
principal components representing time series that are not directly
linked to any specific points of the domain X. The spatial functions
bkðxiÞ, i.e., empirical orthogonal functions, are the weight coeffi-
cients of the kth amplitude function wkðtÞ for a denested basin xi.
In Holmström (1970), bkðxiÞ and wkðtÞ are also termed as weights
and amplitude functions, respectively. They both are dimensionless
with values in the range ð�1;þ1Þ. The centred series Xðt;xiÞ for
an area xi are thus obtained as a linear combination of different
amplitude functions projected on the weight vectors for this area.
The basic equation to determine bkðxiÞ for the case with discharge
Q expressed in m3/s is written down as:

XM
j¼1

covQ ðxi;xjÞbkðxjÞ ¼ kkbkðxiÞ; i ¼ 1; . . . ;M ð3Þ

The covariance matrix covQ ðxi;xjÞ in Eq. (3) between denested
time series at gauging stations i and j can be directly estimated
from the sample spatial variance-covariance matrix ĉðxi;xjÞ

� �
.
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