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A lattice Boltzmann model for solute transport in open channel flow
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a b s t r a c t

A lattice Boltzmann model of advection–dispersion problems in one-dimensional (1D) open channel
flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics
are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint–Venant equations
(LABSVE). The advection–dispersion model is coupled with the LABSVE using the lattice Boltzmann
method. Our research recovers the advection–dispersion equations through the Chapman-Enskog expan-
sion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the
lattice Boltzmann numerical method is adopted to solve the advection–dispersion problem by meso-
scopic particle distribution; (2) and the model describes the relation between discharge, cross section
area and solute concentration, which increases the applicability of the water quality model in practical
engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within
a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a
dam break flow. The model is then applied to a 50-year flood point source pollution accident on the
Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

A coupled hydrodynamic and solute transport lattice Boltzmann
model is investigated for 1D open channel flow. The lattice Boltz-
mann method (LBM) is a newly developed numerical approach to
solve the incompressible Navier–Stokes equations (Chen and
Doolen, 1998). It is a entirely explicit, easy to parallelize, and can
handle complex fluids and geometries (Shan et al., 2006). It uses
a different solver for the nonlinear partial differential equations,
compared to traditional Computational Fluid Dynamics (CFD)
methods, such as the finite difference method (FDM), finite volume
method (FVM) and finite element method (FEM), which discretize
the equations in time and space directly (Zhang et al., 2002). For
example, Gurarslan et al., 2013 derived a compact finite difference
method solution for 1D Advection–Diffusion (AD) equation, which
is sixth-order in space and fourth-order in time accuracy.
Gurarslan (2014) also compared high-order finite difference
method two-dimensional (2D) AD model to a fourth-order
Runge–Kutta scheme, and verified its accuracy and efficiency.
The LBM simulates the macroscopic dynamics indirectly, by calcu-

lating microscopic molecular particle movements, and integrates
them to form physical variables (Zhou, 2004). The unique features
of the LBM brings significant benefits for calculation and program-
ming, especially for high computational density problems in
engineering.

The LBM is used in many fluid dynamics engineering applica-
tions, especially in solving the advection–dispersion equation
(ADE). Advection–dispersion problems have been an important
area of research for many years, due to applications in practical
engineering. For example, pollutant transport in open channel
flows, heat transfer in multi-phase fluid flows, nutrition transport
in organism colonies, and cell movement in blood vessels, etc
(Merks et al., 2002). Hughes et al. (1989) presented a finite element
formulation for advection-diffusive equations in computational
fluid dynamics. Leveque (1996) used a wave-propagation finite
volume approach to solve the advection–diffusion equation in
second-order accuracy. Meerschaert and Tadjeran (2004) devel-
oped an practical numerical finite difference method to approxi-
mate the fractional advection–dispersion equations in
groundwater, and modeled the passive tracers transport in porous
medium properly.

In previous research, most lattice Boltzmann schemes for
advection–dispersion problems focused on improving the accuracy
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and stability in 2D fluid flows. O’Brien et al. (2002) compared
experimental data to a 2D lattice Boltzmann method for advec-
tion–diffusion model in porous media flow. Ginzburg (2006) pro-
posed a lattice Boltzmann scheme to advection and anisotropic
dispersion equations (AADE) to solve Richard’s equation in satu-
rated flow. Zhou (2009) studied the LBM for the ADE in 1D area
based on solve the 2D shallow water equations. Li and Huang
(2008) coupled a hydrodynamic model with advection and aniso-
tropic dispersion using the LBM in shallow water flows. Servan-
Camas and Tsai (2009) analyzed the stability constraints for the
LBM for the ADE, and illustrated that the negativity equilibrium
distribution function values do not necessarily lead to instabilities.
Peng et al. (2011) investigated a 2D LBM solute transport model in
shallow water, showing that the multiple-relaxation-time (MRT)
terms have better stability than the Bhatnagar-Gross-Krook
(BGK) terms. Hammou et al. (2011) focused on the analysis the
relation between kinetic parameters and stability of two-
relaxation-times (TRT) lattice Boltzmann scheme. Ginzburg
(2013) presented several anisotropic collisions for a lattice Boltz-
mann model dealing with the ADE, and introduced many different
anisotropic schemes to remove numerical diffusion. Patel et al.
(2014) reported a discontinuous Galerkin lattice Boltzmann
scheme to solve heat transfer advection–dispersion problems.
Ginzburg and Roux (2015) analyzed the truncation effect of TRT-
LBM scheme on advection–diffusion equations, and further com-
pared the accuracy and stability of different boundary schemes
with variable Peclet number (Pe). Most recently, Markl and
Korner, 2015 derived a Neumann boundary condition for no-flux
free surface, which expanded the study area of the LBM for the
ADE problems.

Our study couples the 1D hydrodynamics model with AD model
based on solving the Saint–Venant equations (SVE) and the advec-
tion–dispersion equations, which could improve the practicality of
using LBM for dealing with flux and wetted boundaries when sim-
ulating solute transport in open channel flow. It also introduces a
more efficient method to deal with 1D ADE problems for engineer-
ing applications, e.g. dam break flow, which is a typical hydrody-
namic problem in engineering, can cause significant loss of
human life (Zhou, 2004). And it is much faster than 2D models in
computation.

Section 2 introduces the lattice Boltzmann equations and the
ADE, using the Chapman-Enskog expansion. Section 3 simulates
three benchmarks to validate the method. Section 4 presents an
application to a pollution accident, demonstrating the utility of
the formulation.

2. Lattice Boltzmann method

2.1. Lattice Boltzmann Equation

The lattice Boltzmann method was derived first by McNamara
and Zanetti (1988) from a lattice-gas-automata (LGA) model, and
further developed using the Bhatnagar-Gross-Krook (BGK) colli-
sion operator (Bhatnagar et al., 1954), which is also called the
single-relaxation-time (SRT). The SRT collision operator is simpler
and more efficient compared to two relaxation times (TRT) and
multiple relaxation times (MRT) collision operators (Peng et al.,
2016). The LBM considers particle movement as two separate
steps, streaming and collision. In streaming, particles move for-
wards or backwards to neighboring lattices according to velocity
vectors in a D1Q3 scheme (Zhou et al., 2004) (Fig. 1). The streaming
is governed by

f aðxþ eaDt; t þ DtÞ ¼ �f aðx; tÞ þ
1
2
DteaFðx; tÞ; ð1Þ

where f a is the particle distribution function and �f a is the initial f a
before the streaming step. ea is a particle velocity vector defined by

ea ¼
0; a ¼ 0
e; a ¼ 1
�e; a ¼ 2

8><
>: ð2Þ

where e ¼ Dx=Dt. Dx is the lattice size and Dt is the time step, and
Fðx; tÞ is the external force term.

In the collision step, particles collide with each other and reach
equilibrium according to a scattering rule within each lattice,
which is defined by

�f aðx; tÞ ¼ f aðx; tÞ þXa f ðx; tÞ½ �; ð3Þ
where Xa is the collision operator, which controls the collision
speed of f a. It can be linearized to the BGK collision operator
(Bhatnagar et al., 1954)

Xaðf Þ ¼ �1
s
ðf a � f eqa Þ; ð4Þ

where s is the single relaxation time coefficient and f eqa is the local
equilibrium distribution function. Combining the two steps
together gives the lattice Boltzmann equation (LBE)

f aðxþ eaDt; t þ DtÞ � f aðx; tÞ ¼ �1
s

f a � f eqa
� �þ 1

2
DteaFðx; tÞ: ð5Þ

The derivation of f eqa is listed in Appendix A, which is similar to
the conduction of shallow water LBM model by Zhou (2004). The
solution of f eqa is

f eqa ¼
1
2 kcAþ eaQc

2e2 ; a ¼ 1;2
ð1� kÞcA; a ¼ 3:

(
ð6Þ

where k is

k ¼ Kd

Dt s� 1
2

� �
e2

: ð7Þ

2.2. Advection–dispersion equations

The solute transport and pollutant concentration variation in an
open channel flow can be described by ADE. Advection describes
the pollutant or solute particles moved from one place to another
due to the local velocity of the water. In dispersion, solute mole-
cules move from high concentration regions to lower concentra-
tion according to a dispersion coefficient Kd, proportional to the
negative of the concentration gradient according to Fick’s law
(Garcia-Navarro et al., 2000). These phenomena can be described
by the advection–dispersion equation. As the wetted area-
averaged concentration is to be considered, a simple form of the
1D advection–dispersion model is (Holly, 1975)

@ðcAÞ
@t

þ @ðQcÞ
@x

¼ @

@x
Kd

@ðcAÞ
@x

� �
: ð8Þ

The recovery of advection–dispersion equation is a well-known
process and listed in Appendix B, which verified the accuracy of the
conduction. Hence, the concentration is expressed as

Fig. 1. D1Q3 Lattice Scheme.
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