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s u m m a r y

We present the application of a parametric stochastic weather generator within a nonstationary context,
enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The
generalized linear model framework of the weather generator allows any number of covariates to be
included, such as large-scale climate indices, local climate information, seasonal precipitation and
temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study,
but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total
precipitation and mean maximum and minimum temperatures as covariates for conditional simulation.
Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial aver-
age is the dominant mode of variability across the domain. We find this modification to be effective in
capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further
illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts
and multidecadal projections, both of which are generally of coarse resolution.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Scientific and technological advances, together with awareness
of the importance of climate on human endeavors, are creating
increased worldwide demand for climate information. Fortunately,
our ability to monitor and predict variations in climate has
increased substantially (Barnston et al., 2010; Stockdale et al.,
2010). A number of groups now forecast climate conditions a few
seasons ahead (Goddard et al., 2003; Saha et al., 2006). Emerging
developments may enable climate projections 10–20 years into
the future, a scale intermediate between seasonal forecasts and
manmade climate change projections (Haines et al., 2009; Hurrell
et al., 2009; Meehl et al., 2009). These advances, however, must
be matched by a better understanding of how science can inform
climate-resilient planning and development (Stainforth et al.,
2007).

To support public and private adaptation and mitigation
responses, climate information must be credible, legitimate and,
especially, salient – e.g., relevant to the needs of decision makers

(Cash et al., 2003). Needs include not only predictions or projec-
tions1 (Bray and von Storch, 2009) of regional climate: potential out-
comes of adaptation actions are probably more relevant to stakeholders
than raw climate information. Thus, an enhanced capacity is needed
to ‘‘translate” climate information into distributions of outcomes
for risk assessment and management (Hansen et al., 2006).

Process models (e.g., crop biophysical models, hydrological
models) can be useful tools to assess likely impacts on climate-
sensitive sectors of society, and to evaluate the outcomes of
alternative adaptive actions (Ferreyra et al., 2001; Berger, 2001;
Berger et al., 2006; Happe et al., 2008; Freeman et al., 2009;
Schreinemachers and Berger, 2011; Bert et al., 2006, 2007, 2014).
These models, however, typically require daily weather data.
Although historical daily weather can be used, getting long-term
daily weather is laborious and costly at best and, in some cases,
impossible. Typically, historical observations have missing data
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1 Following Bray and von Storch (2009), prediction conveys a sense of certainty
whereas projection is associated more with the possibility of something happening
given a certain set of plausible, but not necessarily probable, circumstances. A
prediction can be used to design specific response strategies, while a projection, or
more precisely a series of projections, provides a range on which to consider a range
of response strategies.
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that are not accepted by impact models. Similarly, point measure-
mentsmay not represent the true spatial variability of a nonstation-
ary natural process (e.g., daily precipitation). Most importantly,
observed sequences provide a solution based on only one realiza-
tion of the weather process (Richardson, 1981).

The use of seasonal forecasts of regional climate and its impacts
can help decision-makers to lessen the adverse effects of unfavor-
able conditions or, alternatively, to capitalize on favorable condi-
tions. Nevertheless, a major obstacle to broader use of seasonal
climate forecasts is their coarse spatial and temporal resolution.
Similarly, 10–20 year projections of regional climate conditions
have been identified as important to infrastructure planners, water
resource managers, and many others (Hurrell et al., 2009). Unfortu-
nately, projections of regional monthly precipitation and tempera-
ture from climate models not only are coarse in space and time – as
seasonal forecasts – but also involve considerable uncertainty,
which requires exploration of the impacts of alternative, plausible
trajectories. Stochastic weather generators have long been used for
risk assessment and adaptation, as they can provide a rich variety
of plausible climatic scenarios. Moreover, weather generators can
produce spatially consistent series that can be used to downscale
larger-scale scenarios.

Traditional weather generators (stemming from Richardson,
1981) model precipitation occurrence as a chain-dependent pro-
cess (Katz, 1977) and thus are capable of generating physically
realistic prolonged wet and dry spells. The remaining weather vari-
ables (e.g., precipitation intensity and temperature) are parameter-
ized using probability distributions (for precipitation intensity)
and linear time series models (for temperature), which capture his-
torical climatological variability and linear relationships between
variables but fail to capture extremes (e.g., extreme drought or
flooding). In order to capture the variability of weather attributes
in any specific season, the simulations need to be conditioned on
appropriate covariates. One approach is to estimate the parameters
of the generator conditionally by considering ENSO (El Niño South-
ern Oscillation; Trenberth and Stepaniak, 2001) phase, or any other
teleconnection to a region’s climate, which enables simulation of
skillful sequences (Grondona et al., 2000; Ferreyra et al., 2001;
Wilby et al., 2002; Meza, 2005; Katz et al., 2002). Wilks (2008)
illustrated the capability of interpolating weather generator
parameters to arbitrary locations (e.g., on a grid) using local
weighted regressions; Wilks (2009) subsequently offered a method
to synchronize gridded synthetic weather series on observed
weather data. Approaches to producing weather sequences that
deviate from climatology have included the implementation of
seasonal correction factors, perturbation of parameters or input
data, and spectral approaches (Caron et al., 2008; Kilsby et al.,
2007; Hansen and Mavromatis, 2001; Schoof et al., 2005; Qian
et al., 2010).

Nonparametric weather generators have an improved ability to
capture nonlinearities between variables and sites. Included in this
subclass are the k-nearest neighbor (k-NN) bootstrap resampling
method (Brandsma and Buishand, 1998; Rajagopalan and Lall,
1999; Buishand and Brandsma, 2001; Beersma and Buishand,
2003; Yates et al., 2003; Sharif and Burn, 2007) and kernel density
based estimators (Rajagopalan et al., 1997; Harrold et al., 2003;
Mehrotra and Sharma, 2007). Caraway et al. (2014) first applied
a clustering algorithm to identify regions of similar climatology
before applying the k-NN approach, which has shown good perfor-
mance in regions of complex terrain. Apipattanavis et al. (2010)
modified the k-NN approach to create a semi-parametric weather
generator that better captures the duration of wet and dry spells
via Markov chain modeling. Modifications of the k-NN based
weather generator to incorporate seasonal precipitation forecasts
(Apipattanavis et al., 2010) and multi-decadal projections
(Podestá et al., 2009) have also been proposed. In these situations,

the resampling is weighted to reflect the projected distribution of
regional climate conditions. These methods are simple and
powerful, however their main drawback is that they cannot gener-
ate values outside the range of historical data. More importantly, it
is not easy to generate weather sequences at locations other than
those with historical observations.

Pioneered by Stern and Coe (1984), generalized linear models
(GLMs) are able to straightforwardly model non-normal data
through a suite of link functions. Relevant to this research, GLMs
can be used to model and simulate daily weather sequences, and
have paved the way for generating space–time weather sequences
at any desired location (Kleiber et al., 2012, 2013; Furrer and Katz,
2007; Kim et al., 2012; Yan et al., 2002; Yang et al., 2005; Chandler,
2005; Verdin et al., 2015). Recently Verdin et al. (2015) incorpo-
rated these developments into a robust space–time weather gener-
ator and demonstrated its capability to generate realistic weather
sequences at arbitrary locations in the Pampas of Argentina – also
the region targeted by this paper. The GLM framework offers sev-
eral advantages – mainly they reduce the effort in modeling non-
normal variables and are parsimonious (McCullagh and Nelder,
1989), especially for discrete and skewed variables (e.g., precipita-
tion occurrence and intensity, respectively). Coupled with spatial
processes, GLMs can generate sequences at any spatial resolution
– which is important for resource management. Furthermore,
covariates such as ENSO information, seasonal climate forecasts,
and annual cycles can easily be incorporated in the GLMs to refine
or narrow the distribution of expected values (e.g., Chandler and
Wheater, 2002; Wheater et al., 2005; Furrer and Katz, 2007; Kim
et al., 2012).

As motivated earlier in this section, skillful and realistic
sequences of daily weather in any given season are essential for
efficient planning and management of agricultural resources. One
method of obtaining such sequences requires generating space–
time weather sequences that are consistent with, and conditioned
on, coarse climate information from seasonal to decadal time
scales. To this end, here we propose a modification to the stochas-
tic weather generator presented in Verdin et al. (2015) to include
the coarse scale information as covariates. We refer to the weather
generator of Verdin et al. (2015) as ‘‘original”; that of this research
will be called the ‘‘modified” weather generator. The paper is orga-
nized as follows: the study region and data are described in Sec-
tion 2; Section 3 contains a brief summary of the modified
methodology. In Section 4 we discuss the results, and in Section 5
we conclude with a summary of the research and future work.

2. Study region and data

Application of this methodology is focused on a network of sev-
enteen weather stations located in and around the Salado A basin
of the Pampas of Argentina (see Fig. 1). The Salado is part of the
large Río de la Plata basin (Herzer, 2003). Note the study region dif-
fers from that of Verdin et al. (2015).

The A basin is an agriculturally productive sub-basin within the
Salado River basin where maize, soybean, and wheat are grown.
The Salado Basin has very flat topography and a poorly developed
and disintegrated drainage system. The western basin (Salado A)
includes mega-parabolic dunes separated by depressions that con-
strain evacuation of surface water (Aragón et al., 2010; Viglizzo
et al., 2009, 1997). Since colonial times, the Salado has shown alter-
nating floods and droughts that displace populations and disrupt
productive activities and livelihoods for extended periods. Floods
were frequent during the late 19th and early 20th centuries, a rel-
atively wet epoch. In contrast, extensive droughts were more fre-
quent during the drier 1930s–1950s (Herzer, 2003; Seager et al.,
2010). Partly in response to rain increases since the 1970s, severe
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