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a b s t r a c t

Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics
of storage. Analytical solutions of transient storage models in literature didn’t cover the spatially non-
uniform storage. A novel integral transform strategy is presented that simultaneously performs integral
transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunc-
tions derived from the advection–diffusion equation of the stream. The semi-analytical solution of the
multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying
the generalized integral transform technique to all partial differential equations in the multiple-zone
transient storage model. The derived semi-analytical solution is validated against the field data in liter-
ature. Good agreement between the computed data and the field data is obtained. Some illustrative
examples are formulated to demonstrate the applications of the present solution. It is shown that solute
transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-
sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small,
more reaches are recommended to calibrate the parameter.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Contaminant concentrations in the stream are affected by the
flow in the stream and the mass exchange between the stream
and storage zones. Bencala and Walters (1983) firstly presented a
transient storage model to simulate the concentration in the
stream by considering the mass exchange between the stream
and a single storage zone. Subsequently, single-zone transient stor-
age models have been widely used to investigate smaller peaks and
longer tails in the stream concentration profile (Cheong and Seo,
2003; Dewaide et al., 2016; Fernald et al., 2001; Ge and Boufadel,
2006; Hart, 1995; Morales et al., 2010; Runkel and Broshears,
1991; Runkel and Chapra, 1993; Wörman, 2000; Zaramella et al.,
2003). In single-zone transient storage models, a lumped storage
zone was assumed. In fact, transient storages are usually catego-
rized into surface transient storages and hyporheic transient stor-
ages (Briggs et al., 2009). Since these two kinds of transient
storages have different hydraulic and biochemical properties,
multiple-zone transient storage models have been developed to
consider the effects of multiple storage zones on the concentration
in the stream (Anderson and Phanikumar, 2011; Briggs et al., 2009;

Briggs et al., 2010; Choi et al., 2000; de Dreuzy and Carrera, 2016;
Li et al., 2011; Marion et al., 2008; Neilson et al., 2010; Patrick
Wang et al., 2005; Silva et al., 2009; Zaramella et al., 2016).

Transient storage models were usually solved by using the finite
difference technique (Choi et al., 2000; Fernald et al., 2001; Runkel
and Broshears, 1991; Runkel and Chapra, 1993; Silva et al., 2009). A
typical example is the one-dimensional transport with inflow and
storage (OTIS) model (Runkel and Broshears, 1991). In OTIS, the
stream is divided into one or more reaches and each reach consists
of a number of segments. The parameters of transient storage,
velocity and diffusion coefficient are stored in the segments.
Apparently, although the parameters were not written as explicit
functions of spatial coordinate in OTIS, the spatially non-uniform
storage throughout the stream was virtually considered because
of the definition of segments. A few analytical solutions of tran-
sient storage models have been developed by using the Laplace
transform technique or the integral transform technique (De
Smedt, 2006; De Smedt, 2007; Kazezyılmaz-Alhan, 2008; Qiu
et al., 2011). The solutions of De Smedt (2006), De Smedt (2007)
and Kazezyılmaz-Alhan (2008) were derived for the constant
velocity and diffusion coefficient as well as the spatially uniform
storage. The solution of Qiu et al. (2011) considered the variation
of the velocity and the diffusion coefficient along the stream while
keeping the assumption of spatially uniform storage. However,
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transient storage varies along the stream due to stream hydraulic
conditions and the characteristics of storage such as the sediment
component, etc. As pointed out by Briggs et al. (2010), it is of sig-
nificant importance to determine the variation of the transient
storage exchange of solutes along the stream. To the author’s
knowledge, none has attempted to taken into account the spatially
non-uniform storage in the semi-analytical solution of transient
storage models.

The purpose of this paper is to derive the semi-analytical solu-
tion of the multiple-zone transient storage model with the spa-
tially non-uniform storage. The presented semi-analytical
solution is validated against the published experimental data.
Some illustrative examples are presented to demonstrate the
application of the derived semi-analytical solution.

2. Model formulation

The multiple-zone transient storage model includes the tran-
sient advection–diffusion equation and some localized mass con-
servation equations. Taking into account the first-order decay
and the generation of solute, the multiple-zone transient storage
model can be written as follows
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where C(x,t) and Cs,i(x,t) are the solute concentration in the stream
and in the ith storage zone, respectively; v(x) represents the velocity
in the stream; D(x) represents the solute dispersion in the stream;
ai(x) is the mass exchange coefficient between the stream and the
ith storage zone, bi(x) = As,i(x)/A(x) is the ratio of cross-sectional
areas where A(x) and As,i(x) are the channel cross-sectional area
and the storage zone cross-sectional area, c(x) means the first-
order decay of solute in the stream, S(x,t) represents the generation
of solute in the stream, M is the number of storage zones. In Eqs. (1)
and (2), ai(x) and bi(x) are written explicitly as functions of spatial
coordinate x to represent the spatially non-uniform storage.

The inflow boundary condition is given by

Cðx; tÞjx¼0 ¼ f ðtÞ ð3Þ
where f(t) is a function to represent the variation of concentration
with time. The outflow boundary condition is given by
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¼ 0 ð4Þ

For generality, a concentration distribution is assumed in the
stream and in storage zones at the initial time

Cðx; tÞjt¼0 ¼ gðxÞ ð5Þ

Cs;iðx; tÞ
��
t¼0 ¼ hiðxÞ; i ¼ 1; � � �M ð6Þ

where g(x) and hi(x) are functions of spatial coordinate.

3. Solution methodology

The Laplace transform technique has been successfully used to
solve the transient storage model with constant parameters (De
Smedt, 2006; De Smedt, 2007; Kazezyılmaz-Alhan, 2008). When
the velocity and the dispersion coefficient in the transient storage
model are spatially dependent, the coupled use of the Laplace
transform technique and the generalized integral transform tech-

nique (GITT) was developed (Qiu et al., 2011). However, for the
spatially non-uniform storage the differential equations of Tn(t)
(see the definition in Eqs. (16) and (17)) in the paper of Qiu et al.
(2011) would become highly complex and is difficult to solve.

In this paper, a full GITT solution strategy is developed to solve
the system of Eqs. (1) and (2). GITT was developed by Cotta (1993)
to solve heat and fluid flow problem. The solution obtained by GITT
is of a general analytical nature (Sphaier et al., 2011). It has been
successfully applied to solute transport in porous media (Liu
et al., 2000), convection-diffusion problems (Almeida and Cotta,
1995; Cotta, 1990; Cotta et al., 2013), multi-species transport prob-
lem (Chen et al., 2012; Pérez Guerrero et al., 2010; Pérez Guerrero
et al., 2009). In GITT, a Sturm–Liouville eigenvalue problem is con-
structed and the eigenfunctions are used to transform the original
advection-diffusion equation. Unlike the conventional application
of GITT to a single advection-diffusion equation (Sphaier et al.,
2011), the system of Eqs. (1) and (2) consists of M+1 partial differ-
ential equations. However, only Eq. (1) contains the diffusion term.
So, only a single eigenvalue problem can be constructed from Eq.
(1), which writes

d2unðxÞ
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þ k2nunðxÞ ¼ 0; n ¼ 1;2; . . .1 ð7Þ
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����
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where kn is the eigenvalue, un(x) is the eigenfunction. The
eigenvalue problem (7)-(9) gives the following eigenfunction,
eigenvalue and norm

unðxÞ ¼ sinðknxÞ ð10Þ

kn ¼ ð2nþ 1Þp
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In the derivation of Qiu et al. (2011), integral transform was
only performed to C(x, t). In the present full GITT solution strategy,
both C(x, t) and Cs,i(x, t) are simultaneously transformed by using
the eigenfunction un(x), which reads

Uðx; tÞ ¼
XK
n¼1

1
N1=2

n
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with

Uðx; tÞ ¼ Cðx; tÞ � f ðtÞ ð15Þ
The existence of Eq. (14) enables the separation of variables of

Eq. (2) and the mass exchange term in Eq. (1), which is the crucial
step to derive the semi-analytical solution. The boundary condition
of C(x,t), i.e., Eq. (3), is inhomogeneous. The introduction of U(x,t)
makes the boundary condition of U(x,t) homogeneous, as shown
in Eqs. (20) and (21). In the computation, the infinite series in
Eqs. (13) and (14) must be truncated at a certain value. K is the
number of eigenfunctions and eigenvalues adopted in the infinite
series.

The inverse integral transforms can be defined as follows
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