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a b s t r a c t

Following the development of Error Reduction and Representation In Stages (ERRIS) for daily streamflow
forecasting, we extend ERRIS to streamflow forecasting at an hourly time step (ERRIS-h). ERRIS applies
a staged error model to reduce errors in hydrological simulations and to quantify prediction uncertainty.
ERRIS produces probabilistic predictions, and is capable of propagating errors through multiple lead
times to generate ensemble traces. In this study, we identify the need to model the residual distribution
differently for rising and falling limbs of hydrographs when applying ERRIS to hourly streamflow fore-
casting. To address this need, ERRIS-h uses different distribution parameters for the two limbs.
We evaluate ERRIS-h on eight rivers in Australia. Hourly streamflow simulations are produced by forc-

ing an initialized GR4H hourly rainfall-runoff model with observed rainfall. We apply ERRIS-h to the
streamflow simulations to produce ensemble streamflow predictions with lead times up to 48 h. The
ensemble streamflow predictions here can be viewed as forecasts when rainfall forecasts are perfect.
In this way, we test the ability of ERRIS-h to update forecasts using the most up-to-date streamflow
observations and to generate ensemble traces that reflect hydrological uncertainty.
As expected, ERRIS-h is highly effective when applied to the zeroth lead time, dramatically reducing

errors in the original GR4H simulations and reliably describing forecast uncertainty. We also show that
ERRIS-h ensemble forecasts have smaller errors than deterministic simulations at all lead times and are
reliable in ensemble spread even at 48 h lead times.

Crown Copyright � 2017 Published by Elsevier B.V. All rights reserved.

1. Introduction

Short-term streamflow forecasts, particularly at the hourly time
step, deliver detailed estimates of the volume and timing of
streamflow events over a future period. Effective streamflow fore-
casts provide information for emergency services and support
timely mitigation of the impacts of floods. Streamflow forecasts
have also become a crucial component of water resources opera-
tion and planning.

Streamflow forecasts are uncertain, and the quantification of
forecast uncertainty should accompany any forecast
(Krzysztofowicz, 2001). Quantifying uncertainty, for example by
issuing ensemble forecasts, provides additional information to
end-users, enables risked-based flood warning and aids rational
decision-making (e.g. Arnal et al., 2016; Raftery, 2016).

Australia is marked by hydrological extremes: it is the driest
inhabited continent, but also suffers from sporadic, devastating
floods. The Bureau of Meteorology (BoM) is Australia’s major
agency responsible for issuing streamflow forecasts and flood
warnings. At present, models that underpin short-term stream-
flow and flood forecasts issued by the BoM are deterministic.
Ensemble forecasting systems offer the promise of more accurate
forecasts, as well as quantifying forecast uncertainty (e.g. Bennett
et al., 2014a,b; Demargne et al., 2014). Accordingly, the BoM is
seeking to transition from deterministic forecasting to ensemble
forecasting.

The most common operational streamflow forecasting
approach is to force an initialised conceptual rainfall-runoff
model with forecast rainfall and potential evaporation (PE). Fore-
cast rainfall is a far more important determinant of streamflow
than PE (often climatology PE is used as a surrogate ‘forecast’)
and we confine our discussion to forecast rainfall. Uncertainty
in streamflow forecasts can be conveniently ascribed to two
sources: uncertainty in rainfall forecasts and uncertainty in
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hydrological modelling. Many researchers have quantified uncer-
tainty in rainfall forecasts by the use of quantitative precipitation
forecasts (QPF) from numerical weather prediction (NWP) mod-
els. Some forced a hydrological model with every member of
an ensemble QPF (e.g. Alfieri et al., 2012; Bartholmes and
Todini, 2005; Cloke and Pappenberger, 2009; Cuo et al., 2011;
Wetterhall et al., 2013). Some post-processed deterministic QPFs
to interpret the full spectrum of rainfall forecast uncertainty
(Bennett et al., 2014a; Robertson et al., 2013; Shrestha et al.,
2015). Accounting only for rainfall uncertainty, however, usually
results in streamflow forecasts that are overconfident, especially
at short lead times where hydrological uncertainty is often the
dominant source of uncertainty (Bennett et al., 2014a).

Hydrological uncertainty arises from imperfections in observa-
tions, model structure and model parameters that make it diffi-
cult for a hydrological model to reproduce hydrographs exactly,
even with perfect forcings (i.e., observed rainfall and PE). Some
methods based on the Bayesian framework have been developed
to characterise modelling uncertainty using parameter uncer-
tainty, for example the generalised likelihood uncertainty estima-
tion (GLUE) (Beven and Binley, 1992), the hydrologic uncertainty
processor (HUP) (Krzysztofowicz and Maranzano, 2004), the
Bayesian total error analysis (BATEA) (Kavetski et al., 2006) and
the ensemble Bayesian forecasting system (EBFS) (Herr and
Krzysztofowicz, 2015). Other methods characterise modelling
uncertainty by using statistical techniques to describe the beha-
viour of the model residuals (e.g. Evin et al., 2013; Gragne
et al., 2015a,b; Schaefli et al., 2007; Solomatine and Shrestha,
2009). These methods, typically called error modelling methods,
consider only the overall forecast errors without addressing the
sources of errors. Error modelling methods are generally much
easier to implement than the attempts to describe all separate
sources of uncertainty and are particularly useful for real-time
forecasting operations.

Li et al. (2016) developed an error modelling method, called
Error Reduction and Representation In Stages (ERRIS), to quantify
the hydrological model uncertainty in forecasts as well as to
reduce forecast errors. ERRIS is a staged error model that uses
a sequence of simple error models (instead of a single complex
one) to address the statistical properties of the residuals progres-
sively. ERRIS requires few computational resources and can be
used for real-time streamflow forecasting systems. ERRIS was
tested for daily streamflow simulations and was shown to
improve accuracy substantially and to quantify the simulation
uncertainty reliably.

This paper presents an extension of ERRIS for hourly stream-
flow forecasting. Hourly streamflow tends to differ from daily
streamflow in important ways. For example, hourly flow and
model residuals tend to be more autocorrelated, which, as we
will show, can change the distribution of residuals. Further, fore-
cast updating and uncertainty propagation must be carried out
24 times as often for hourly as for daily models; correctly prop-
agating uncertainty over many time increments is more challeng-
ing, as we will discuss. In this study, we evaluate the suitability
of ERRIS for hourly streamflow forecasting. A revised ERRIS
model is introduced and evaluated on eight Australian rivers cov-
ering different climate and hydrological conditions. The forecast
performance with respect to multiple lead times is evaluated
by various forecast verification measures.

The manuscript is organised as follows: Section 2 reviews the
original ERRIS and describes the revised model structure. Section 3
describes the background of the example application. Section 4
presents the main results and findings of this study. Section 5 pro-
vides concluding remarks and discussion.

2. Methods

2.1. Review of ERRIS

ERRIS consists of four stages; each can be considered a simple
error model. Each error model successively improves the charac-
terisation of the residuals.

All error models in ERRIS consider residuals in transformed
space. For data transformation, ERRIS makes use of the log-sinh
transformation (Wang et al., 2012) to normalise raw data, q, and
homogenise its variance:

hðqÞ ¼ b�1 logfsinhðaþ bqÞg: ð1Þ
a and b are transformation parameters. The back-transformation

h�1 converts forecasts in the transformed space back to the original
space.

We define the following notations to describe model
formulation.

qðtÞ Observed streamflow
~qðtÞ Simulated streamflow
zðtÞ ¼ hfqðtÞg Observed streamflow in the transformed space
~ziðtÞ Forecast median in the transformed space at Stage i
~qiðtÞ ¼ h�1f~ziðtÞg Forecast median in the original space at Stage i
eiðtÞ ¼ zðtÞ � ~ziðtÞ Model residual at Stage i

The error model at each stage contains two components: the
definition of ~ziðtÞ and the probability distribution of eiðtÞ.

Stage 1: Data normalization
The Stage 1 error model simply transforms data:

~z1ðtÞ ¼ hf~qðtÞg ð2Þ

e1ðtÞ � Nð0;r2
1Þ; ð3Þ

where r1 is the standard deviation of the model residual at Stage 1.
The transformation ensures residuals are normally distributed and
homoscedastic. It is an option to jointly estimate the hydrological
model parameters with transformation parameters. Alternatively,
we can simply ‘bolt on’ ERRIS to already calibrated hydrological
models for convenience (Li et al., 2016).

Stage 2: Conditional bias-correction
To correct bias in the hydrological model, Stage 2 applies a con-

ditional bias-correction (Bennett et al., 2016b) by

~z2ðtÞ ¼ lþ d~z1 ð4Þ

e2ðtÞ � Nð0;r2
2Þ ð5Þ

where l and d are the bias-correction parameters and r2 is the
standard deviation of the model residual at Stage 2. This stage is
to refine the streamflow simulations when the base hydrological
model has not been adequately calibrated. The stage may be
skipped if the base hydrological model has been calibrated by using
methods that produce conditionally unbiased simulations, for
example the method of maximum likelihood or weighted least
squares. ERRIS assumes that residuals are unbiased, thus if using
calibration methods that may produce biased simulations (e.g.
deterministic objectives such as the Nash-Sutcliffe efficiency), the
bias-correction may be necessary. We note, however, that the
bias-correction requires reasonably long records of observations
to ensure bias can be accurately characterised (i.e., observations
that cover both wet and dry periods). If only short records (e.g.
<5 years) are available, we advise caution when applying the bias-
correction.
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