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a b s t r a c t

The heteroscedasticity treatment in residual error models directly impacts the model calibration and pre-
diction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity,
including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyper-
bolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach
(CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with
the first order autoregressive model and the skew exponential power (SEP) distribution, four residual
error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likeli-
hood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe
River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the
widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with
the heteroscedasticity and hence their corresponding predictive performances are improved, yet the neg-
ative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reli-
ability and effectively avoids the negative flows, because the CA approach is capable of addressing the
complicated heteroscedasticity over the study basin.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Advances in hydrologic models in recent years have led to an
increasing need to improve calibration and generate realistic pre-
diction intervals (Stedinger et al., 2008), for the applications of
short-term flood warning and long-term water resource manage-
ment. Probabilistic uncertainty quantification has now become
essential practice (Evin et al., 2014; Stedinger et al., 2008) for both
research and operational modeling, e.g., during forecasting and
parameter regionalization (Zhang et al., 2008).

Research on probabilistic uncertainty analysis has mainly two
general approaches, including: (1) using residual error models to
treat total uncertainty in a lumped manner (e.g., Bates and
Campbell, 2001; Evin et al., 2013, 2014; Schoups and Vrugt,
2010; Sorooshian and Dracup, 1980); (2) separating predictive
uncertainty into its contributing sources (e.g., Giudice et al.,
2013; Gotzinger and Bardossy, 2008; Reichert and Mieleitner,

2009; Renard et al., 2010). Errors in input, model structural, output,
and parameters are typically lumped into the residual errors for
the former approaches, which are conceptually simpler for opera-
tional applications (e.g., Tuteja et al., 2011) and less data intensive
than the latter approaches (Evin et al., 2014). This study focuses on
the residual error model approaches, in which model parameter
estimates are based on a likelihood function quantifying the prob-
ability that the measured data are reproduced by a particular
parameter set (Box and Tiao, 1992). Therefore, adequately charac-
terizing the form of residual errors is of great importance to obtain
reliable and precise parameter distributions and hydrologic
predictions.

However, due to the complexity of physical processes and the
deficiencies in the hydrologic models, residual errors often show
characteristics of autocorrelation, nonnormality and heteroscedas-
ticity (Sorooshian and Dracup, 1980). Consequently, assumptions
about the residual errors are most likely violated in many hydro-
logical applications (Cheng et al., 2014; Leta et al., 2015; Nourali
et al., 2016; Schoups and Vrugt, 2010). The autocorrelation can
be represented using the autoregressive (AR) models (Bates and
Campbell, 2001; Li et al., 2015, 2016; Schaefli et al., 2007;
Sorooshian and Dracup, 1980) or the more general autoregressive
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moving average (ARMA) model (Kuczera, 1983). The nonnormality
of residual errors is often addressed by using data transformation
methods (Box and Cox, 1964; Krzysztofowicz, 1997; Romanowicz
et al., 1994; Wang et al., 2012) or can be explicitly represented
by different probability distributions (Marshall et al., 2006;
Schaefli et al., 2007; Schoups and Vrugt, 2010).

As for heteroscedasticity, implicit transformational methods
can also be used to stabilize variance. For example, Box-Cox trans-
formations have been widely used to transform streamflow and
hold great potential to deal with the strong heteroscedasticity
(Engeland et al., 2010; Laloy et al., 2010; Li et al., 2011; Smith
et al., 2015). However, their primary goal is to transform non-
Gaussian distributions to near-Gaussian shape. Besides, Box-Cox
transformations fail to characterize heavy-tailed residuals, as
shown in the studies of Bates and Campbell (2001) and Yang
et al. (2007a). Compared to the implicit transformation methods,
heteroscedasticity can be represented explicitly by conditioning
the standard deviation of residual errors on explanatory variables
such as streamflow. The most common method is to describe the
standard deviation of residuals as a linear function of streamflow
(Evin et al., 2013; Thyer et al., 2009; Schoups and Vrugt, 2010;
Yang et al., 2007b). Evin et al. (2013) further pointed out that
applying a linear model to standardize raw residuals, followed by
the application of a first order AR (AR(1)) model to the standard-
ized residuals, will lead to more reliable probabilistic prediction.
In addition to the linear heteroscedastic model, Wang et al.
(2012) derived the log-sinh transformation by assuming a nonlin-
ear model between standard deviation of residual errors and
streamflow.

In this study, autocorrelation, nonnormality and heteroscedas-
ticity of residual errors were all considered in the model calibration
and uncertainty estimation process. The autocorrelation was
accounted for by applying an AR(1) model to the standardized
residuals, based on Evin et al. (2013). For processing the nonnor-
mality of residual errors, the skew exponential power (SEP) distri-
bution (Schoups and Vrugt, 2010) which has flexible form and is
easily adapted for normal distribution, was applied. Few studies
have focused on the advantages and disadvantages of implicit
transformational methods and explicit methods for dealing with
heteroscedasticity. To compare the effect of the heteroscedasticity
treatment in residual error models, three traditional methods of
treating the heteroscedasticity were applied in this study, includ-
ing two explicit methods: linear modeling (LM) and nonlinear
modeling (NL) using hyperbolic tangent function, as well as one
implicit method: Box-Cox transformation (BC).

The heteroscedasticity becomes stronger and more complicated
for large heterogeneous river basins with complex climate condi-
tions and strong seasonality, which poses great challenges for the
application of traditional methods to deal with heteroscedasticity.
Evin et al. (2014) pointed out that the error heteroscedasticity was
poorly represented by a linear model in ephemeral catchments.
McInerney et al. (2017) compared different approaches for repre-
senting error heteroscedasticity in different basins and found that
predictive performance in ephemeral catchments was typically
worse than other catchments. Therefore, the aim of this study is
to assess different heteroscedasticity treatment methods of resid-
ual errors in a large basin with complex climate conditions and
strong seasonality. A case study was conducted using the Variable
Infiltration Capacity (VIC, Liang et al., 1994, 1996) hydrologic
model over the Huaihe River basin of China, where sharp shift of
flood and drought often occurs (Sun et al., 2016) and the error
characteristics are similar to ephemeral catchments.

Based on the results of three residual models of treating
heteroscedasticity applied in the VIC model, the streamflow pre-
dictions were not satisfying enough over the Huaihe River basin.
Therefore, we proposed a combined approach (CA) combining BC

with LM trying to deal with the strong and complex heteroscedas-
ticity. In conjunction with the SEP distribution and the AR(1)
model, four residual models (LM-SEP, NL-SEP, BC-SEP, and CA-
SEP) were generated and their corresponding likelihood functions
were adapted from the generalized likelihood (GL) function in
Schoups and Vrugt (2010). The ultimate objectives are to identify
the impacts of these residual error models on capturing the skew-
ness and kurtosis of residual errors, avoiding negative flows, and
producing reliable probabilistic predictions.

The rest part of the paper is organized as follows. Section 2
introduces the four residual error models employed in the study.
Section 3 describes the study area and various data, as well as
detailed methodology including hydrologic model calibration
method and verificationmethods. Results are provided in Section 4,
followed by discussions and conclusions in Section 5.

2. Residual error models

2.1. Bayesian inference

A residual error model is used to describe the residual errors et ,
defined as

et ¼ Q
�
t � QtðhHÞ ð1Þ

where Q
�
t is the observed streamflow at time step t and Qt ðhHÞ is

the simulated streamflow with hydrologic parameters hH at time
step t.

According to Bayes theorem, the posterior distribution of
parameters is

pðhH; hejQ
�
Þ / pðQ

�
jhH; heÞpðhH; heÞ ð2Þ

where he denotes the residual error model parameters, pðQ
�
jhH; heÞ is

the likelihood function and pðhH; heÞ is the prior distribution of
hydrologic and residual error model parameters. The likelihood
function can be represented in the form of the joint probability den-
sity function (PDF) of the residuals

pðQ
�
jhH; heÞ ¼ pðe½hH�jheÞ ð3Þ

where e½hH� is the vector of residual errors obtained over the calibra-
tion period.

2.2. Formulations

In this study, we have examined four residual error models for
model calibration and streamflow prediction. All residual models
apply the AR(1) model to the normalized residual errors, which
can lead to more reliable predictive performances as shown by
Evin et al. (2013). In addition, the innovations follow the assump-
tion of Evin et al. (2014) to have a unit variance, which will facili-
tate parameter estimation.

The differences among the four models mainly lie in the
approaches to deal with heteroscedasticity, as shown in Table 1.
Both the explicit method and the implicit method are tested. In
addition, a new approach which combines LM with BC, is
introduced.

1. LM-SEP. This residual error model is similar to the GL error
model except that the AR(1) is applied to the standardized residu-
als based on Evin et al. (2013), which is defined by

gt ¼
et
rt

; gt ¼ u1gt�1 þ at with at � SEPð0;1; n; bÞ; rt ¼ r0 þ r1Qt

ð4Þ
where rt is a normalization term, u1 is the first-order autoregres-
sive coefficient and at is the innovation described by the SEP
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