Accepted Manuscript

Title: Elevated CO₂ Accelerates Depletion of Phosphorus by Common Bean (*Phaseolus vulgaris*) in association with Altered Leaf Biochemical Properties

Author: Zhong MA, Jennifer FLYNN, Grant LIBRA, Zechuan SHI

PII: S1002-0160(17)60420-X DOI: S1002-0160(17)60420-X

Reference: NA

To appear in:

Received date: NA
Revised date: NA
Accepted date: NA

Please cite this article as: Zhong MA, Jennifer FLYNN, Grant LIBRA, Zechuan SHI, Elevated CO₂ Accelerates Depletion of Phosphorus by Common Bean (*Phaseolus vulgaris*) in association with Altered Leaf Biochemical Properties, *Pedosphere* (2017), S1002-0160(17)60420-X.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

PEDOSPHERE

Pedosphere ISSN 1002-0160/CN 32-1315/P

doi:10.1016/S1002-0160(17)60420-X

Elevated CO₂ Accelerates Depletion of Phosphorus by Common Bean (*Phaseolus vulgaris*) in association with Altered Leaf Biochemical Properties

Zhong MA, Jennifer FLYNN, Grant LIBRA, Zechuan SHI

Department of Biology, Truman State University, Kirksville, MO 63501, USA

ABSTRACT

Phosphorus (P) is a major limiting factor for plant productivity in many ecosystems and agriculture. The projected increase in atmospheric CO_2 is likely to result in changes in plant mineral consumption and growth. We studied phosphorus depletion by common bean plants cultured hydroponically under ambient $(377 \pm 77 \, \mu \text{mol mol}^{-1})$ or elevated $(650 \pm 32 \, \mu \text{mol mol}^{-1})$ CO_2 , in media of low or high phosphorus. Compared to ambient CO_2 environment, under elevated CO_2 : 1) maximum phosphorus depletion rate increased by 98% at low phosphorus and 250% at high phosphorus, and phosphorus was depleted about 2 to 5 weeks sooner; 2) leaf acid phosphatase (APase) activity and leaf chlorophyll content both increased significantly; 3) root-to-shoot ratio increased significantly at high phosphorus, although it was unaffected at low phosphorus; 4) lateral root respiration rate had no change, suggesting that CO_2 did not affect phosphorus depletion via metabolic changes to the roots; 5) total biomass at final harvest was significantly higher at both low- and high- phosphorus. Our data show that the increased rate and amount of phosphorus depletion during growth under elevated CO_2 occurred in association with alteration in leaf biochemical properties, i.e., enhanced activities of leaf APase and increased leaf chlorophyll content.

Key words: phosphorus depletion, elevated CO₂, dry matter accumulation, biomass partitioning.

INTRODUCTION

Plant growth is dependent on below- and above-ground resources including water, mineral nutrients, light, and CO₂. The concentration of CO₂ in the Earth's atmosphere was below 300 μg g⁻¹ prior to the Industrial Revolution of the late 18th to 19th centuries. Since then, increased use of fossil fuels has led to the present level of CO₂ close to 400 μg g⁻¹, and it is predicted to reach about 1000 μg g⁻¹ by the end of this century and nearly 2000 μg g⁻¹ by the end of the next century (Change, 2013). The projected rise in atmospheric CO₂ could result in higher rate of photosynthesis and increased plant productivity. In a CO₂ enriched environment with adequate water, nutrients, and a lack of pests or disease, both C3 and C4 plants have been found to respond positively (De Souza *et al.*, 2008; Clark *et al.*, 2010). Such responses include faster development, greater biomass, and higher yield due to increased photosynthesis and

Download English Version:

https://daneshyari.com/en/article/8895360

Download Persian Version:

https://daneshyari.com/article/8895360

<u>Daneshyari.com</u>