Accepted Manuscript

Title: Nitrogen Use Efficiency of Rice under Cd Contamination: Impact of Rice Cultivar versus Soil Type

Author: ZHOU Yan-Li, LI Chang-Ming and SUN Bo

PII: S1002-0160(17)60483-1

DOI: 10.1016/S1002-0160(17)60483-1

Reference: NA

To appear in:

Received date: NA
Revised date: NA
Accepted date: NA

Please cite this article as: ZHOU Yan-Li, LI Chang-Ming and SUN Bo, Nitrogen Use Efficiency of Rice under Cd Contamination: Impact of Rice Cultivar versus Soil Type, *Pedosphere* (2017), 10.1016/S1002-0160(17)60483-1.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

PEDOSPHERE

Pedosphere ISSN 1002-0160/CN 32-1315/P

doi:10.1016/S1002-0160(17)60483-1

Nitrogen Use Efficiency of Rice under Cd Contamination: Impact of Rice Cultivar versus Soil Type*1

ZHOU Yan-Li^{1,2}, LI Chang-Ming^{1,3} and SUN Bo^{1,*2}

¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008(China)

ABSTRACT

There are increasing pressures to select rice cultivars with high yields and nitrogen use efficiency (NUE), but with low Cd accumulation in Cd-contaminated paddy soils. To investigate the relative effects of rice genotype, soil type and Cd contamination on the rice grain yield and NUE, a pot experiment consisting of nine rice cultivars was conducted in two types of paddy soils, red paddy soil (RS) and yellow paddy soil (YS), with or without Cd spiked at 0.6 mg kg⁻¹, respectively. Considering the nitrogen supply from both the soil organic N pools and N fertilizers, the NUE was defined as the grain yield per unit of total crop-available N in the soil. Cd contamination decreased the grain yield and NUE in most of the rice cultivars, which was mainly related to the reduced N-uptake efficiency (NpUE, percentage of N taken up by the crop per unit of soil available N). However, Cd contamination enhanced the N-utilization efficiency (NtUE, grain yield per unit of N taken up by the crop) by 21.9% on average in all of the tested rice cultivars. The NpUE was mainly affected by the soil type, whereas the NtUE was affected by the rice cultivar. The hybrid cultivars had higher NUEs than the japonica and indica cultivars because of their greater biomass and higher tolerance to Cd contamination. Reduction of the NUE after Cd addition was stronger in RS than in YS, which was related to the lower absorption capacity for Cd in the former soil. Canonical correspondence analysis-based variation partitioning analysis showed that the cultivar type had a larger impact (34.4%) on the NUE, followed by Cd addition (15.2%) and soil type (10.0%).

Key words: cadmium, N-uptake efficiency, N-utilization efficiency, rice cultivar, soil type, soil available N

INTRODUCTION

Rice is the staple food for more than 50% of the world's population (Ladha *et al.*, 2005). In China, paddy fields are suffering increasing heavy metal pollution as a consequence of

-

²Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 (China)

³University of Chinese Academy of Sciences, Beijing 100049(China)

^{*1}Supported by the National Basic Research Program of China (2014CB441003) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15030200).

^{*2} Corresponding author. E-mail: bsun@issas.ac.cn.

Download English Version:

https://daneshyari.com/en/article/8895423

Download Persian Version:

https://daneshyari.com/article/8895423

<u>Daneshyari.com</u>