

Available online at [www.sciencedirect.com](http://www.elsevier.com/locate/exmath)

EXPOSITIONES
MATHEMATICAE

[Expo. Math. 36 \(2018\) 166–177](http://dx.doi.org/10.1016/j.exmath.2017.08.004)

www.elsevier.com/locate/exmath

Gelfand–Mazur Theorems in normed algebras: A survey

S.J. Bh[a](#page-0-0)tt^a, S.H. Kulkarni^{[b](#page-0-1),*}

^a *Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, 388120, India* ^b *Department of Mathematics, Indian Institute of Technology - Madras, Chennai 600036, India*

Received 7 December 2016

Abstract

The Gelfand–Mazur Theorem, a very basic theorem in the theory of Banach algebras states that: (Real version) Every real normed division algebra is isomorphic to the algebra of all real numbers $\mathbb R$, the complex numbers $\mathbb C$ or the quaternions $\mathbb H$; (Complex version) Every complex normed division algebra is isometrically isomorphic to C. This theorem has undergone a large number of generalizations. We present a survey of these generalizations and also discuss some closely related unsettled issues.

⃝c 2017 Elsevier GmbH. All rights reserved.

MSC 2010: 46K15; 46H20

Keywords: Gelfand; Mazur; Normed algebra; Division algebra; Isomorphism; Quaternion

1. The Gelfand–Mazur theorem

An *algebra* A over a field *F* is a vector space over *F* which is also a ring such that for all $x, y \in A$ and for all $\lambda \in F$, $\lambda(xy) = x(\lambda y) = (\lambda x) y$ holds. We assume A to be associative and not necessarily having identity element. We shall take *F* to be either the real numbers $\mathbb R$ or the complex numbers $\mathbb C$, and accordingly call $\mathcal A$ to be a *real algebra* or a *complex algebra*. A *divisionalgebra* is an algebra with identity such that every non zero element is invertible. A *normed algebra* $(A, \|\cdot\|)$ is an algebra A together with a

[∗] Corresponding author.

<http://dx.doi.org/10.1016/j.exmath.2017.08.004> 0723-0869/ \circ 2017 Elsevier GmbH. All rights reserved.

E-mail addresses: sj [bhatt@spuvvn.edu](mailto:sj_bhatt@spuvvn.edu) (S.J. Bhatt), shk@iitm.ac.in (S.H. Kulkarni).

norm $\Vert . \Vert$ such that $(A, \Vert . \Vert)$ is a normed linear space and the norm is submultiplicative, that is, $||xy|| \le ||x|| ||y||$ for all *x*, *y* in A. A *Banach algebra* is a normed algebra that is a Banach space. Banach algebras exhibit a fruitful interplay between Algebra and Analysis resulting into a rich theory of algebras in analysis [\[11](#page--1-0)[,15](#page--1-1)[,30](#page--1-2)[,39](#page--1-3)[,41\]](#page--1-4). The subject has a rich collection of examples from Function Theory, Harmonic Analysis and Linear Operator Theory in Banach and Hilbert Spaces. It has also provided a basic framework for the development of C^{*}-algebras and von Neumann algebras creating a foundation for the development of noncommutative mathematics of analysis like Noncommutative Probability and Noncommutative Geometry. The following fundamental theorem is a corner stone of Banach Algebras; and it compares in simplicity and beauty with the Liouville Theorem of Complex Analysis. We recall two popular versions of the theorem.

Theorem 1.1 (*Real Version*). *Every real normed division algebra is isomorphic to the set of all real numbers* R*, the complex numbers* C *or the quaternions* H*.*

Theorem 1.2 (*Complex Version*). *Every complex normed division algebra is isometrically isomorphic to* C*.*

The division algebra $\mathbb H$ of quaternions is the algebra consisting of elements of form $x = \alpha_0 1 + \alpha_1 i + \alpha_2 j + \alpha_3 k$ subject to the multiplication $ij = -ji = k$, $jk =$ $-kj = i, ki = -ik = j, i^2 = j^2 = k^2 = -1, 1$ being the multiplicative identity. The theorem is a natural sequel to the classical Frobenius Theorem $[17,20]$ $[17,20]$ that states that a real finite dimensional division algebra is isomorphic to \mathbb{R} , or \mathbb{C} or \mathbb{H} ; and it illustrates the power of methods of Analysis to study infinite dimensional algebras. This is also illustrated by the fact that in a Banach algebra, if an element x is invertible, then all y in an appropriate neighbourhood of *x* are also invertible. Immediately after the appearance of first papers in Banach algebras [\[37](#page--1-7)[,49](#page--1-8)[,50\]](#page--1-9), Mazur [\[36\]](#page--1-10) announced the theorem without proof. It is stated by some authors that Mazur's original submission contained a proof. But it was deleted from the final paper due to Editor's insistence on shortening the proof. A very elegant proof of the complex version, based on the Liouville Theorem for entire functions was given by Gelfand in his famous paper [\[22\]](#page--1-11). Mazur's original proof based incidentally on Liouville Theorem for harmonic functions became available much later in a book by Zelazko [\[53\]](#page--1-12). It can also be found in [\[34\]](#page--1-13). Thus chronologically the theorem deserves to be called the Mazur–Gelfand Theorem; but the term Gelfand–Mazur Theorem has become very popular and well established by now. Like some other fundamental theorems, Gelfand–Mazur Theorem and its avatars have also inspired elementary proofs thereof [\[14](#page--1-14)[,21](#page--1-15)[,29,](#page--1-16)[33,](#page--1-17)[40,](#page--1-18)[41,](#page--1-4)[45\]](#page--1-19).

Let A be a complex normed algebra with identity 1. A proof due to Arens $[2]$ of the complex version uses the Liouville Theorem. A major step in this proof is to prove that for $x \in A$ the resolvent function $R_x(\lambda) := (\lambda 1 - x)^{-1}, \lambda \in \mathbb{C}$ is analytic wherever it is defined. A consequence of the theorem is the most fundamental result of Banach Algebras that for each $x \in A$, the *spectrum* $sp(x) := \{ \lambda \in \mathbb{C} : (\lambda 1 - x)$ is not invertible in A is non empty and compact. On the other hand, Gelfand's proof as well as the elementary proofs due to Kametani [\[31\]](#page--1-21) and Rickart [\[40](#page--1-18)[,41\]](#page--1-4) establish first the non emptiness of spectra from which the theorem follows easily. (The elementary proof due to Kametani and Rickart is based on decomposing the polynomial $xⁿ - 1$ in terms of linear factors

Download English Version:

<https://daneshyari.com/en/article/8895552>

Download Persian Version:

<https://daneshyari.com/article/8895552>

[Daneshyari.com](https://daneshyari.com)