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Abstract

We point out a link between the theorem of Balian and Low on the non-existence of well-localized
Gabor–Riesz bases and a constant curvature connection on projective modules over noncommutative
tori.
c⃝ 2018 Elsevier GmbH. All rights reserved.
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1. Introduction

The theorem of Balian–Low on the non-existence of well-localized Gabor–Riesz bases
for L2(R) is one of the cornerstones of time-frequency analysis [2,15]. For the formulation
we first introduce the multiplication operator and differentiation operator, denoted by
(∇1g)(t) = 2π i t g(t) and (∇2g)(t) = g′(t) , respectively. Let π (z)g(t) = e2π iωt g(t − x)
be the time-frequency shift of a function g by z = (x, ω) in phase space. Gabor studied
in [8] systems of the form G(g, θZ×Z) = {π (θk, l)g : k, l ∈ Z}, so-called Gabor systems
with Gabor atom g. The density theorem for Gabor frames says that if G(g, θZ × Z) θ is
a frame, then θ ∈ (0, 1].

A natural question about Gabor systems G(g, θZ × Z) for a fixed Gabor atom g is to
study for which θ the system G(g, θZ × Z) is a frame. If g is well-localized in time and
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frequency, then θ = 1 will be excluded as for the Gaussian. It turns out that for some Gabor
atoms g, such as the Gaussian or any totally positive function of finite type G(g, θZ×Z) is
a Gabor frame for any θ in (0, 1), [13,18,24]. On the other hand the answer for the indicator
function of an interval [0, c] is much more intricate and the values θ and c for which one
gets a Gabor frame are known as Janssen’s tie [7,14]. The theorem of Balian–Low provides
an explanation for these facts.

Theorem 1.1 (Balian–Low). Suppose the Gabor system G(g,Z2) is an orthonormal basis
for L2(R). Then(∫

R
|(∇1g)(t)|2 dt

)(∫
R

|(∇2g)(t)|2 dt
)

= ∞.

In particular, the theorem of Balian–Low implies that if G(g,Z2) is an orthonormal
basis for L2(R), then g is not well-localized in time and frequency, e.g. g cannot be in the
Schwartz class S (R) or in Feichtinger’s algebra S0(R). The definition of Gabor systems
does not indicate a link to regularity properties of the Gabor atom. Hence, the very reason
for the incompatibility between orthonormal Gabor bases of the form G(g,Z2) and good
time-frequency localization is not well understood despite the vast literature on the Balian–
Low theorem [1–4,9,10,12,19,20]. Note that some authors refer to statements of the form
Theorem 1.1 as weak Balian–Low theorems.

The main aim of this investigation is to present an approach to Gabor frames that
provides an explanation of the link between regularity properties of Gabor atoms and
their behavior at the critical density. We are building on the correspondence between
Gabor frames and projective modules over noncommutative tori [16,17]. The standard
argument to demonstrate Theorem 1.1 is due to Battle [3]. We are demonstrating that
Battle’s argument is best understood in terms of noncommutative geometry.

2. Noncommutative tori

In noncommutative geometry one attempts to define geometric objects and notions for
general C∗-algebras. For our purpose we need the noncommutative torus Aθ equipped with
its structure as a noncommutative manifold. We briefly recall the construction of vector
bundles over noncommutative tori, which are finitely generated projective modules over
Aθ , the differential structure on Aθ is given by derivations and on the vector bundles by a
connection, and the notion of curvature of a connection [5].

We denote the operators π (0, 1) and π (θ, 0) as M1 and Tθ , respectively. Note that we
have M1Tθ = e2π iθ Tθ M1 and hence the norm closure of {π (kθ, l) : k, l ∈ Z} defines the
noncommutative torus Aθ , [21]. The smooth noncommutative torus is the subalgebra A∞

θ

of Aθ consisting of operators

π (a) =

∑
k,l∈Z

aklπ (θk, l), for a = (akl) ∈ S (Z2). (1)

The standard derivations on Aθ are given by

∂1(a) = 2π i
∑
k,l

kaklπ (θk, l) and ∂2(a) = 2π i
∑
k,l

laklπ (θk, l) .

The Schwartz space S (R) turns out to be vector bundle over A∞

θ , [5,16,22].
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