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1. Introduction

Linear sets are natural generalisations of subgeometries. Let A = PG(W,Fn) =
PG(r — 1,¢™), where W is a vector space of dimension r over Fyn. A point set L of
A is said to be an [Fy-linear set of A of rank k if it is defined by the non-zero vectors of
a k-dimensional I -vector subspace U of W; that is,

L=Ly={(W,:uecU\{0}}.

The maximum field of linearity of an Fy-linear set Ly is Fge if ¢ | n is the largest integer
such that L is an Fg:-linear set. Two linear sets Ly and Ly of PG(r—1, ¢™) are said to be
PT'L(r, q")-equivalent if there is an element ¢ in PT'L(r, ¢") such that Lg = Ly . It may
happen that two Fy-linear sets Ly and Ly of PG(r—1, ¢™) are PT'L(r, ¢")-equivalent even
if the two Fy-vector subspaces U and W are in different orbits of I'L(r, ¢"); see [7] and
[3] for further details. In recent years, starting from the paper [17] by Lunardon, linear
sets have been used to construct or characterise various objects in finite geometry, such
as blocking sets and multiple blocking sets in finite projective spaces, two-intersection
sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon,
translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on
linear sets we refer the reader to [21]; see also [12]. In applications, it is crucial to have
methods to decide whether two linear sets are PT'L(r, ¢™)-equivalent or not.

In this paper we focus on mazimum scattered Fg-linear sets of PG(L,¢™) with
maximum field of linearity F,, that is, F,-linear sets of rank n of PG(1,¢™) of size
(¢" —1)/(¢g —1). If Ly is a maximum scattered Fy-linear set, then U is a mazimum
scattered IFg-subspace.

If the point ((0,1))r,. is not contained in the linear set Ly of rank n of PG(1,q")
(which we can always assume after a suitable projectivity), then U = Uy :=
{(z, f(z)): x € Fyn} for some ¢g-polynomial f(z) = Z?:_ol a;z9 in Fyn[x]. In this case we
will denote the associated linear set by Ly. The known non-equivalent, under I'L(2, ¢™),
maximum scattered F,-subspaces are the following:

(1) UL = {(z,29): z € Fpn}, 1 <s<n-—1,ged(s,n)=1([2,8]);

(2) Uf; = {(2,027 + 29" ")z €Fgn}, n >4, Nyuyo(6) € {0,1}, ¢ # 2, ged(s,n) = 1
([18] for s =1, [22,19] for s # 1);

(3) Us’”gl = {(z,627 +29""): z € Fyn}, n € {6,8}, ged(s,n/2) = 1, Nyn gn/2(9) ¢
{0,1}.

In (3), for the precise conditions on ¢ and ¢, see [5, Theorems 7.1 and 7.2]. Also here
q > 2, otherwise L‘:’:? is not scattered.

The stabilisers of the Fg-subspaces above in the group GL(2, ¢™) were determined in
[5, Sections 5 and 6]. They have the following orders:
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