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In [2] and [18] are presented the first two families of maximum 
scattered Fq-linear sets of the projective line PG(1, qn). More 
recently in [22] and in [5], new examples of maximum scattered 
Fq-subspaces of V (2, qn) have been constructed, but the 
equivalence problem of the corresponding linear sets is left 
open.
Here we show that the Fq-linear sets presented in [22] and in 
[5], for n = 6, 8, are new. Also, for q odd, q ≡ ±1, 0 (mod 5), 
we present new examples of maximum scattered Fq-linear 
sets in PG(1, q6), arising from trinomial polynomials, which 
define new Fq-linear MRD-codes of F6×6

q with dimension 12, 
minimum distance 5 and left idealiser isomorphic to Fq6 .
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1. Introduction

Linear sets are natural generalisations of subgeometries. Let Λ = PG(W, Fqn) =
PG(r − 1, qn), where W is a vector space of dimension r over Fqn . A point set L of 
Λ is said to be an Fq-linear set of Λ of rank k if it is defined by the non-zero vectors of 
a k-dimensional Fq-vector subspace U of W ; that is,

L = LU = {〈u〉Fqn
: u ∈ U \ {0}}.

The maximum field of linearity of an Fq-linear set LU is Fqt if t | n is the largest integer 
such that LU is an Fqt-linear set. Two linear sets LU and LW of PG(r−1, qn) are said to be 
PΓL(r, qn)-equivalent if there is an element φ in PΓL(r, qn) such that Lφ

U = LW . It may 
happen that two Fq-linear sets LU and LW of PG(r−1, qn) are PΓL(r, qn)-equivalent even 
if the two Fq-vector subspaces U and W are in different orbits of ΓL(r, qn); see [7] and 
[3] for further details. In recent years, starting from the paper [17] by Lunardon, linear 
sets have been used to construct or characterise various objects in finite geometry, such 
as blocking sets and multiple blocking sets in finite projective spaces, two-intersection 
sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon, 
translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on 
linear sets we refer the reader to [21]; see also [12]. In applications, it is crucial to have 
methods to decide whether two linear sets are PΓL(r, qn)-equivalent or not.

In this paper we focus on maximum scattered Fq-linear sets of PG(1, qn) with 
maximum field of linearity Fq, that is, Fq-linear sets of rank n of PG(1, qn) of size 
(qn − 1)/(q − 1). If LU is a maximum scattered Fq-linear set, then U is a maximum 
scattered Fq-subspace.

If the point 〈(0, 1)〉Fqn
is not contained in the linear set LU of rank n of PG(1, qn)

(which we can always assume after a suitable projectivity), then U = Uf :=
{(x, f(x)) : x ∈ Fqn} for some q-polynomial f(x) =

∑n−1
i=0 aix

qi in Fqn [x]. In this case we 
will denote the associated linear set by Lf . The known non-equivalent, under ΓL(2, qn), 
maximum scattered Fq-subspaces are the following:

(1) U1,n
s := {(x, xqs) : x ∈ Fqn}, 1 ≤ s ≤ n − 1, gcd(s, n) = 1 ([2,8]);

(2) U2,n
s,δ := {(x, δxqs + xqn−s) : x ∈ Fqn}, n ≥ 4, Nqn/q(δ) /∈ {0, 1}, q �= 2, gcd(s, n) = 1

([18] for s = 1, [22,19] for s �= 1);
(3) U3,n

s,δ := {(x, δxqs + xqs+n/2) : x ∈ Fqn}, n ∈ {6, 8}, gcd(s, n/2) = 1, Nqn/qn/2(δ) /∈
{0, 1}.

In (3), for the precise conditions on δ and q, see [5, Theorems 7.1 and 7.2]. Also here 
q > 2, otherwise L3,n

s,δ is not scattered.
The stabilisers of the Fq-subspaces above in the group GL(2, qn) were determined in 

[5, Sections 5 and 6]. They have the following orders:
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