

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Bol loops and Bruck loops of order pq up to isotopism *

Petr Vojtěchovský

Department of Mathematics, University of Denver, South York Street 2390, Denver, CO, 80208, USA

ARTICLE INFO

Article history: Received 29 September 2017 Received in revised form 16 January 2018 Accepted 26 February 2018 Available online xxxx Communicated by L. Storme

MSC: primary 20N05 secondary 12F05, 15B05, 15B33, 20D20

Keywords:
Bol loop
Bruck loop
Quadratic field extension
Enumeration
Isotopism

ABSTRACT

Let p>q be odd primes. We classify Bol loops and Bruck loops of order pq up to isotopism. When q does not divide p^2-1 , the only Bol loop (and hence the only Bruck loop) of order pq is the cyclic group of order pq. When q divides p^2-1 , there are precisely $\lfloor (p-1+4q)(2q)^{-1} \rfloor$ Bol loops of order pq up to isotopism, including a unique nonassociative Bruck loop of order pq.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let p > q be odd primes. In this short note we classify Bol loops of order pq up to isotopism, building upon the work of Niederreiter and Robinson [18,19], and Kinyon,

 $^{^{\}hat{\pi}}$ Research partially supported by the PROF grant of the University of Denver. $E\text{-}mail\ address:\ petr@math.du.edu.}$

Nagy and Vojtěchovský [12]. The classification turns out to be a nice application of group actions on finite fields.

A quasigroup is a groupoid (Q, \cdot) in which all left translations $yL_x = xy$ and all right translations $yR_x = yx$ are bijections. A loop is a quasigroup Q with identity element 1. A (right) Bol loop is a loop satisfying the identity ((zx)y)x = z((xy)x), and a (right) Bruck loop is a Bol loop satisfying the identity $(xy)^{-1} = x^{-1}y^{-1}$.

Two loops Q_1 , Q_2 are said to be *isotopic* if there are bijections f, g, $h:Q_1 \to Q_2$ such that (xf)(yg) = (xy)h for every $x, y \in Q_1$. If f = g = h, the loops are said to be *isomorphic*. Since an isotopism corresponds to an independent renaming of rows, columns and symbols in a multiplication table, it is customary to classify loops (quasigroups and Latin squares [5,14,15]) not only up to isomorphism but also up to isotopism.

Alongside Moufang loops [3,16], automorphic loops [4,11] and conjugacy closed loops [6,9,13], Bol loops and Bruck loops are among the most studied varieties of loops [2,7,8, 10,17,20]. We refer the reader to [1,3] for an introduction to loop theory and to [12] for an introduction to the convoluted history of the classification of Bol loops whose order is a factor of only a few primes.

The following construction is of key importance for Bol loops of order pq. Let

$$\Theta = \{\theta_i \mid i \in \mathbb{F}_q\} \subseteq \mathbb{F}_p$$

be such that $\theta_0 = 1$ and $\theta_i^{-1}\theta_j \in \mathbb{F}_p^* \setminus \{-1\}$ for every $i, j \in \mathbb{F}_q$. Define $\mathcal{Q}(\Theta)$ on $\mathbb{F}_q \times \mathbb{F}_p$ by

$$(i,j)(k,\ell) = (i+k, \ \ell(1+\theta_k)^{-1} + (j+\ell(1+\theta_k)^{-1})\theta_i^{-1}\theta_{i+k}).$$
 (1.1)

Then $\mathcal{Q}(\Theta)$ is always a loop.

This construction was introduced and carefully analyzed by Niederreiter and Robinson in [18]. We can restate some of their results as follows:

Theorem 1.1. [18] Let p > q be odd primes. Then $\mathcal{Q}(\Theta)$ is a Bol loop if and only if there exists a bi-infinite q-periodic sequence (u_i) solving the recurrence relation

$$u_{n+2} = \lambda u_{n+1} - u_n \tag{1.2}$$

for some $\lambda \in \mathbb{F}_p^*$ such that $u_0 = 1$ and $u_i^{-1}u_j \in \mathbb{F}_p^* \setminus \{-1\}$ for every i, j. (Then $\theta_i = u_i^{-1}$ for every $i \in \mathbb{F}_q$.)

If $Q(\Theta)$ is a Bol loop then it is a Bruck loop if and only if $u_i = u_{-i}$ for every $i \in \mathbb{F}_q$. Suppose that two Bol loops correspond to the sequences (u_i) and (v_i) , respectively. Then the loops are isomorphic if and only if there is $s \in \mathbb{F}_q^*$ such that $u_i = v_{si}$ for every $i \in \mathbb{F}_q$, and the loops are isotopic if and only if there are $s \in \mathbb{F}_q^*$ and $r \in \mathbb{F}_q$ such that $u_i = v_r^{-1}v_{si+r}$ for every $i \in \mathbb{F}_q$.

Download English Version:

https://daneshyari.com/en/article/8895615

Download Persian Version:

https://daneshyari.com/article/8895615

Daneshyari.com