

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On a conjecture about a class of permutation trinomials

Daniele Bartoli

A R T I C L E I N F O

Article history: Received 28 December 2017 Received in revised form 3 March 2018 Accepted 13 March 2018 Available online xxxx Communicated by Xiang-dong Hou

MSC: 11T06

Keywords: Permutation polynomials Finite fields Algebraic curves

1. Introduction

Let $q = p^h$ be a prime power. A polynomial $f(x) \in \mathbb{F}_q[x]$ is a *permutation polynomial* (PP for short) if it is a bijection of the finite field \mathbb{F}_q into itself. On the other hand, each permutation of \mathbb{F}_q can be expressed as a polynomial over \mathbb{F}_q .

Permutation polynomials have nice connections with applied areas of mathematics, such as cryptography, coding theory, and combinatorial designs. Random PP for a given field \mathbb{F}_q can be easily constructed. In many applications, however, simple structures or additional extraordinary properties on PPs are usually required and PPs meeting these

 $\label{eq:https://doi.org/10.1016/j.ffa.2018.03.003} 1071-5797/© 2018$ Elsevier Inc. All rights reserved.

ABSTRACT

We prove a conjecture by Tu, Zeng, Li, and Helleseth concerning trinomials $f_{\alpha,\beta}(x) = x + \alpha x^{q(q-1)+1} + \beta x^{2(q-1)+1} \in \mathbb{F}_{q^2}[x], \ \alpha\beta \neq 0, \ q \text{ even, characterizing all the pairs } (\alpha, \beta) \in \mathbb{F}_{q^2}^2$ for which $f_{\alpha,\beta}(x)$ is a permutation of \mathbb{F}_{q^2} .

© 2018 Elsevier Inc. All rights reserved.

E-mail address: daniele.bartoli@unipg.it.

criteria are usually difficult to find. For a deeper treatment of the connections of PPs with other fields of mathematics we refer to [7,6] and the references therein.

In this work we deal with a particular class of PPs introduced in [10], that is polynomials $f_{\alpha,\beta}(x) \in \mathbb{F}_{q^2}$ of type

$$x + \alpha x^{q(q-1)+1} + \beta x^{2(q-1)+1},\tag{1}$$

with $\alpha, \beta \in \mathbb{F}_{q^2}^*$, $q = 2^m$. The authors prove that if

1. $\beta = \alpha^{q-1}$ and $Tr\left(1 + \frac{1}{\alpha^{q+1}}\right) = 0$ or 2. $\beta(1 + \alpha^{q+1} + \beta^{q+1}) + \alpha^{2q} = 0, \ \beta^{q+1} \neq 1$, and $Tr\left(\frac{\beta^{q+1}}{\alpha^{q+1}}\right) = 0$

then $f_{\alpha,\beta}(x)$ permutes \mathbb{F}_{q^2} ; see [10, Theorem 1]. Due to some experimental results, the authors state the following conjecture.

Conjecture 1.1. If $f_{\alpha,\beta}(x)$ permutes \mathbb{F}_{q^2} then 1 or 2 holds.

In this work we prove the above conjecture, using the well known connection between permutation polynomials and algebraic curves over finite fields.

First of all, let us remark that the polynomials $f_{\alpha,\beta}(x)$ belong to the more general class of polynomials

$$f_{r,d,h}(x) = x^r h\left(x^{\frac{q-1}{d}}\right),$$

where h(x) is a polynomial over \mathbb{F}_q , $q = p^m$, d a divisor of q - 1, r an integer with $1 \leq r < (q-1)/d$.

A useful criterion to decide weather $f_{r,d,h}$ permutes \mathbb{F}_q was established in [8,13].

Theorem 1.2. The polynomial $f_{r,d,h}(x)$ is a PP of \mathbb{F}_q if and only if gcd(r, (q-1)/d) = 1and $x^r h(x)^{(q-1)/d}$ permutes the set μ_d of the d-th roots of unity in \mathbb{F}_q .

The above theorem can be seen as an application of the AGW criterion; see [1,11,12]. By Theorem 1.2, the polynomial $f_{\alpha,\beta}(x)$ in (1) permutes \mathbb{F}_{q^2} if and only if

$$x(1+\alpha x^q+\beta x^2)^{q-1}$$

permutes μ_{q+1} . Recalling that for $x \in \mu_{q+1}$ we have that $x^q = 1/x$, this is equivalent to

$$g_{\alpha,\beta}(x) = \frac{\alpha^q x^3 + x^2 + \beta^q}{\beta x^3 + x + \alpha}$$

permuting μ_{q+1} .

Download English Version:

https://daneshyari.com/en/article/8895617

Download Persian Version:

https://daneshyari.com/article/8895617

Daneshyari.com