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We consider the extendability of linear codes over F4, the field 
of order four. Let C be [n, k, d]4 code with d ≡ 1 (mod 4), 
k ≥ 3. The weight spectrum modulo 4 (4-WS) of C is 
defined as the ordered 4-tuple (w0, w1, w2, w3) with w0 =
1
3

∑
4|i>0 Ai, wj = 1

3
∑

i≡j (mod 4) Ai for j = 1, 2, 3. We 
prove that C is 3-extendable if w0 + w2 = θk−2 and if 
either (a) w1 − w0 < 4k−2 + 4 − θk−3; (b) w1 − w0 >
10 · 4k−3 − θk−3 or (c) (w0, w1) = (θk−3, 6 · 4k−3). We also 
give a sufficient condition for the l-extendability of [n, k, d]4
codes with d ≡ 4 − l (mod 4), k ≥ 3 for l = 1, 2, 3 when 
w0 + w2 = θk−2 + 2 · 4k−2.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq denote the field of q elements. We denote by Fn
q the set of n-tuples over Fq. The 

weight of a vector c ∈ F
n
q , denoted by wt(c), is the number of nonzero entries in c. An 

[n, k, d]q code or a q-ary linear code of length n with dimension k and minimum weight 
d is a k-dimensional subspace of Fn

q whose minimum weight of nonzero codewords is d. 
The weight distribution of C is the list of numbers Ai which is the number of codewords 
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of C with weight i. The weight distribution with (A0, Ad, ...) = (1, α, ...) is also expressed 
as 01dα · · · . For an [n, k, d]q code C with generator matrix G, C is called l-extendable
if there exist l vectors h1, . . . , hl ∈ F

k
q such that the extended matrix [G hT

1 · · · hT
l ]

generates an [n + l, k, d + l]q code C′, and C′ is an l-extension of C. Especially when l = 1, 
C is simply called extendable and C′ is an extension of C. In this paper, we deal with 
the extendability of quaternary linear codes. Extension theorems are employed to find 
optimal linear codes to construct new codes from old ones or to prove the nonexistence 
of codes with certain parameters; see [8,15] for ternary linear codes and [2,11] for linear 
codes over Fq. The l-extendability of [n, k, d]4 codes was investigated in [9,12] for l = 1
when d is odd and in [5,13,14,16] for other cases.

Let C be an [n, k, d]q code with d �≡ 0 (mod q). We define the weight spectrum modulo
q (q-WS) as the q-tuple (w0, w1, . . . , wq−1) with

w0 = 1
q − 1

∑
q|i>0

Ai, wj = 1
q − 1

∑
i≡j (mod q)

Ai for j = 1, 2, . . . , q − 1.

From now on in this section, let q = 4. Denote by θj the number of points in PG(j, 4), 
i.e., θj = (4j+1 − 1)/3. We set θ0 = 1 and θj = 0 for j < 0 for convenience.

As for the known extension theorems for linear codes over F4, see [5,14] for the case 
when d ≡ 2 (mod 4) and [5,7,9,12] for the case when d ≡ 3 (mod 4). In this paper, we 
mainly consider the case when d ≡ 1 (mod 4). The following result is already known for 
such a case.

Theorem 1.1 ([5]). Let C be an [n, k, d]4 code with 4-WS (w0, ..., w3), k ≥ 3, d ≡ 1
(mod 4). Then C is 3-extendable if one of the following conditions holds:

(a) w0 = θk−4,
(b) w0 = θk−3 and w2 = 3 · 4k−2,
(c) wj = 0 for j = 2 or 3.

The aim of this paper is to give some new sufficient conditions for the 3-extendability of 
[n, k, d]4 codes with d ≡ 1 (mod 4). We consider the cases w0+w2 = θk−2 or θk−2+2 ·4k−2. 
The following four theorems are our main results.

Theorem 1.2. Let C be an [n, k, d]4 code with 4-WS (w0, ..., w3) with w0 + w2 = θk−2, 
k ≥ 3, d ≡ 1 (mod 4). Then C is 3-extendable if either

(a) w1 − w0 < 4k−2 + 4 − θk−3 or
(b) w1 − w0 > 10 · 4k−3 − θk−3.

Whilst one can not apply Theorem 1.2 when w1 −w0 = 6 · 4k−3 − θk−3, we prove the 
following.
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