Plane sections of Fermat surfaces over finite fields

Herivelto Borges *, Gary Cook, Mariana Coutinho
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, CEP 13566-590, São Carlos SP, Brazil

A R T I C L E I N F O

Article history:

Received 15 November 2017
Accepted 4 April 2018
Available online 17 April 2018
Communicated by Gary L. Mullen

$M S C$:

primary 11 G 20
secondary 14G05, 14H50
Keywords:
Frobenius nonclassical curves
Finite fields

A B S TRACT

In this paper, we characterize all curves over \mathbb{F}_{q} arising from a plane section

$$
\mathcal{P}: X_{3}-e_{0} X_{0}-e_{1} X_{1}-e_{2} X_{2}=0
$$

of the Fermat surface

$$
\mathcal{S}: X_{0}^{d}+X_{1}^{d}+X_{2}^{d}+X_{3}^{d}=0
$$

where $q=p^{h}=2 d+1$ is a prime power, $p>3$, and $e_{0}, e_{1}, e_{2} \in$ \mathbb{F}_{q}. In particular, we prove that any nonlinear component $\mathcal{G} \subseteq$ $\mathcal{P} \cap \mathcal{S}$ is a smooth classical curve of degree $n \leqslant d$ attaining the Stöhr-Voloch bound

$$
\# \mathcal{G}\left(\mathbb{F}_{q}\right) \leqslant \frac{1}{2} n(n+q-1)-\frac{1}{2} i(n-2)
$$

with $i \in\{0,1,2,3, n, 3 n\}$.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let \mathcal{F} be the curve obtained by slicing the Fermat surface

$$
\mathcal{S}: X_{0}^{d}+X_{1}^{d}+X_{2}^{d}+X_{3}^{d}=0
$$

with the plane

$$
\mathcal{P}: X_{3}-e_{0} X_{0}-e_{1} X_{1}-e_{2} X_{2}=0
$$

where d is a positive integer, $e_{0}, e_{1}, e_{2} \in \mathbb{F}_{q}$, and \mathbb{F}_{q} is the finite field with $q=p^{h}$ elements, with p a prime number. In other words, let

$$
\begin{equation*}
\mathcal{F}: X_{0}^{d}+X_{1}^{d}+X_{2}^{d}+\left(e_{0} X_{0}+e_{1} X_{1}+e_{2} X_{2}\right)^{d}=0 \tag{1.1}
\end{equation*}
$$

Characterizing this general curve \mathcal{F} in terms of its rational points and its irreducible and nonsingular components presents many challenges. For instance, the particular case $p=2$ and $e_{0}=e_{1}=e_{2}=1$ has been extensively investigated over the past decades (see [4], [8], [9], [11]). In this context, the following result was essential in Hernando and McGuire's proof of an important conjecture regarding exceptional numbers [4].

Theorem (Hernando-McGuire). The polynomial

$$
\frac{X_{0}^{d}+X_{1}^{d}+X_{2}^{d}+\left(X_{0}+X_{1}+X_{2}\right)^{d}}{\left(X_{0}+X_{1}\right)\left(X_{0}+X_{2}\right)\left(X_{1}+X_{2}\right)}
$$

has an absolutely irreducible factor defined over \mathbb{F}_{2} for all d not of the form $d=2^{i}+1$ or $d=2^{2 i}-2^{i}+1$.

In this paper, we consider the problem of studying the curve given in (1.1) from another point of view. Based on techniques developed by Carlin and Voloch [2], we characterize the curve

$$
\begin{equation*}
\mathcal{C}: C\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{d}+X_{1}^{d}+X_{2}^{d}+\left(e_{0} X_{0}+e_{1} X_{1}+e_{2} X_{2}\right)^{d}=0 \tag{1.2}
\end{equation*}
$$

where $q=p^{h}=2 d+1$ is a prime power, $p>3$, and e_{0}, e_{1} and e_{2} are arbitrary elements in \mathbb{F}_{q}. For such a curve, we give a complete description of the irreducible and nonsingular components and provide their number of \mathbb{F}_{q}-rational points. Consequently, we construct a family of curves attaining the Stöhr-Voloch bound and prove the following theorem, which is the main result of this paper.

Theorem 1.1. If \mathcal{C} is not the union of d lines, then the following statements hold.

https://daneshyari.com/en/article/8895627

Download Persian Version:

https://daneshyari.com/article/8895627

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hborges@icmc.usp.br (H. Borges), garycook82@msn.com (G. Cook), mariananery@usp.br (M. Coutinho).

