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1. Introduction
Let F be the curve obtained by slicing the Fermat surface
S:X{+ X+ X{+X{=0
with the plane
P:X3—e9Xg—e1 X1 —exXo =0,

where d is a positive integer, eg, e1, ea € Fy, and Iy is the finite field with ¢ = p" elements,
with p a prime number. In other words, let

F: X3+ X+ X4 (e0Xo + €1 X1 + e Xo)? = 0. (1.1)

Characterizing this general curve F in terms of its rational points and its irreducible
and nonsingular components presents many challenges. For instance, the particular case
p =2 and ey = e; = e = 1 has been extensively investigated over the past decades
(see [4], [8], [9], [11]). In this context, the following result was essential in Hernando and
McGuire’s proof of an important conjecture regarding exceptional numbers [4].

Theorem (Hernando—McGuire). The polynomial

X4+ X8+ X4+ (Xo+ X1 + Xo)4
(Xo+ X1)(Xo + X2) (X1 + X>)

has an absolutely irreducible factor defined over Fo for all d not of the form d = 2¢ + 1
ord=2% -2 41.

In this paper, we consider the problem of studying the curve given in (1.1) from
another point of view. Based on techniques developed by Carlin and Voloch [2], we
characterize the curve

C : C(Xo,XhXQ) = Xg + X{i —|— XQd —|— (eoXO + €1X1 + €2X2>d = O, (12)

where ¢ = p" = 2d + 1 is a prime power, p > 3, and eg, e; and ey are arbitrary elements
in F,. For such a curve, we give a complete description of the irreducible and nonsingular
components and provide their number of F,-rational points. Consequently, we construct
a family of curves attaining the Stéhr—Voloch bound and prove the following theorem,
which is the main result of this paper.

Theorem 1.1. If C is not the union of d lines, then the following statements hold.
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