ELSEVIER

Extremal quasi-cyclic self-dual codes over finite fields

Hyun Jin Kim ${ }^{\text {a,*,1 }}$, Yoonjin Lee ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ University College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
${ }^{\text {b }}$ Department of Mathematics, Ewha Womans University, 52, Seodaemun-Gu, Seoul, 03760, South Korea

A R T I C L E I N F O

Article history:

Received 20 November 2017
Received in revised form 25 April
2018
Accepted 26 April 2018
Available online xxxx
Communicated by W. Cary Huffman

MSC:

primary 94B05
secondary 11T71

Keywords:
Quasi-cyclic code
Self-dual code
Extremal code
Finite field

A B S T R A C T

We study self-dual codes over a factor ring $\mathcal{R}=\mathbb{F}_{q}[X] /$ $\left(X^{m}-1\right)$ of length ℓ, equivalently, ℓ-quasi-cyclic self-dual codes of length $m \ell$ over a finite field \mathbb{F}_{q}, provided that the polynomial $X^{m}-1$ has exactly three distinct irreducible factors in $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is the finite field of order q. There are two types of the ring \mathcal{R} depending on how the conjugation map acts on the minimal ideals of \mathcal{R}. We show that every selfdual code over the ring \mathcal{R} of the first type with length ≥ 6 has free rank ≥ 2. This implies that every ℓ-quasi-cyclic selfdual code of length $m \ell \geq 6 m$ over \mathbb{F}_{q} can be obtained by the building-up construction, where m corresponds to the ring \mathcal{R} of the first type. On the other hand, there exists a self-dual code of free rank ≤ 1 over the ring \mathcal{R} of the second type. We explicitly determine the forms of generator matrices of all self-dual codes over \mathcal{R} of free rank ≤ 1. For the case that $m=7$, we find 9828 binary 10-quasi-cyclic self-dual codes of length 70 with minimum weight 12 , up to equivalence, which are constructed from self-dual codes over the ring \mathcal{R} of the second type. These codes are all new codes. Furthermore,

[^0]for the case that $m=17$, we find 1566 binary 4 -quasi-cyclic self-dual codes of length 68 with minimum weight 12 , up to equivalence, which are constructed from self-dual codes over the ring \mathcal{R} of the first type.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There has been active development on self-dual codes and quasi-cyclic codes over finite fields and finite rings. Self-dual codes are connected with other combinatorial structures as lattices [7,9], invariant theory [25], designs [1], and so forth. Quasi-cyclic codes are among the most commonly used linear codes. In fact, quasi-cyclic codes can be considered as modules over a group algebra of a cyclic group. There is a one-to-one correspondence between ℓ-quasi-cyclic codes over a finite field \mathbb{F}_{q} of length ℓm and linear codes over a factor ring $\mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{m}-1\right)$ of length $\ell[22]$. Ling and Solé $[22,24]$ studied quasi-cyclic codes over a finite field \mathbb{F}_{q} by considering linear codes over the ring \mathcal{R}, where m is a positive integer coprime to q. There is a bijective correspondence between quasi-cyclic codes over \mathbb{F}_{q} and linear codes over \mathcal{R}. We call quasi-cyclic codes over \mathbb{F}_{q} cubic, quintic, or septic codes depending on $m=3,5$, or 7 , respectively. Binary cubic self-dual codes were studied by Bonnecaze et. al. [3] and binary quintic self-dual codes by Bracco et. al. [5]. Recently, Han et al. [12] worked on the case that $X^{m}-1$ has exactly two distinct irreducible factors in $\mathbb{F}_{q}[X]$; in this case, they proved that every ℓ-quasi-cyclic self-dual code of length $m \ell$ over a finite field \mathbb{F}_{q} can be obtained by the building-up construction. Every quasi-cyclic codes over \mathbb{F}_{q} in this paper has a permutation automorphism of order m without fixed points. There is well-known closely related theory, for example [4,16,17, 30], which is applicable to these codes.

According to our computation, the case that the number of distinct irreducible factors of $X^{m}-1$ in $\mathbb{F}_{2}[X]$ (respectively, $\mathbb{F}_{3}[X]$) is two occurs in 40 percentage (respectively, 41 percentage) and three occurs in 30 percentage (respectively, 30 percentage) for $2 \leq m \leq$ 1000. As a matter of fact, for a fixed finite field \mathbb{F}_{q}, there are infinitely many polynomials $X^{m}-1$ which have exactly three distinct irreducible factors in $\mathbb{F}_{q}[X]$ according to Artin's conjecture. Motivated by this fact, we are interested in working on the case that $X^{m}-1$ has exactly three distinct irreducible factors in $\mathbb{F}_{q}[X]$.

In this paper, we study self-dual codes over a ring $\mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{m}-1\right)$ of length ℓ, equivalently, ℓ-quasi-cyclic self-dual codes of length $m \ell$ over a finite field \mathbb{F}_{q}, provided that the polynomial $X^{m}-1$ has exactly three distinct irreducible factors in $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is the finite field of order q. In fact, for a fixed prime power q, there are infinitely many polynomials $X^{m}-1$ which have exactly three distinct irreducible factors in $\mathbb{F}_{q}[X]$ (Remark 3.4). We point out that there are two types of the ring \mathcal{R} depending

https://daneshyari.com/en/article/8895639

Download Persian Version:

https://daneshyari.com/article/8895639

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: guswls41@yonsei.ac.kr (H.J. Kim), yoonjinl@ewha.ac.kr (Y. Lee).
 ${ }^{1}$ The author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1D1A1B03028251).
 ${ }^{2}$ The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574).

