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For Kummer extensions defined by ym = f(x), where f(x) is a 
separable polynomial over the finite field Fq , we compute the 
number of Weierstrass gaps at two totally ramified places. For 
many totally ramified places we give a criterion to find pure 
gaps at these points and present families of pure gaps. We then 
apply our results to construct n-points algebraic geometric 
codes with good parameters.
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1. Introduction

In the early eighties tools from algebraic geometry were applied by V. Goppa to 
construct linear codes using algebraic curves over finite fields, see [8]. Nowadays these 
codes are called algebraic–geometric codes, AG codes for short. The starting point in the 
construction of an AG code is a projective, absolutely irreducible, non singular algebraic 
curve X of genus g ≥ 1 defined over the finite field Fq with cardinality q. Let F = Fq(X )
be its function field with Fq being the field of constants. Consider Q1, . . . , Qn pairwise 
distinct rational places on F . Let D = Q1 + · · · + Qn and G be divisors such that Qi is 
not in the support of G for i = 1, . . . , n. The linear code CΩ(D, G) is defined by

CΩ(D,G) = {(resQ1(η), . . . , resQn
(η)) | η ∈ Ω(G−D)} ⊆ Fn

q ,

where Ω(G −D) is the space of Fq-rational differentials η on X such that either η = 0
or div(η) � G −D and resQj

η is the residue of η at Qj .
The code CΩ(D, G) has length n and dimension k = i(G − D) − i(G) where i(G)

denotes the speciality index of the divisor G. We say that CΩ(D, G) is an [n, k, d]-code 
where d denotes the minimum distance of the code. One of the main features of this code 
is that its minimum distance d satisfies the classical Goppa bound, namely

d ≥ degG− (2g − 2).

The integer d∗ = degG − (2g− 2) is usually called the designed minimum distance. One 
way to obtain codes with good parameters is to find codes that improve the designed 
minimum distance.

If G = αP for some rational place P on F and D is the sum of other rational 
places on X , then the code CΩ(D, G) is called an one-point AG code. Analogously, if 
G = α1P1 + · · ·+αnPn for n distinct rational places P1, . . . , Pn on X , then CΩ(D, G) is 
called a n-point AG code. For a more detailed introduction to AG codes, see [13,21].

For a one-point divisor G = αP on the function field F , Garcia, Kim, and Lax [6,7]
improved the designed minimum distance using the arithmetical structure of the Weier-
strass semigroup at the rational place P . For a two-point divisor G = α1P1 + α2P2, 
Homma and Kim [11] introduced the notion of pure gaps and obtained similar results. 
By choosing α1 and α2 satisfying certain arithmetical conditions depending on the struc-
ture of the Weierstrass semigroup at P1 and P2, they improved the designed minimum 
distance. Matthews [17] showed that for an arbitrary curve there exist two-point AG 
codes that have better parameters than any comparable one-point AG code constructed 
from the same curve. Finally, for divisors G = α1P1 + · · · + αnPn at n distinct ratio-
nal places on X , results from the theory of generalized Weierstrass semigroups and pure 
gaps were obtained by Carvalho and Torres [2]. They have been used to obtain AG codes 
whose minimum distance beats the classical Goppa bound on the minimum distance, see 
Theorem 2.4.
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