

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Algebraic geometric codes on many points from Kummer extensions

D. Bartoli^a, L. Quoos^{b,*}, G. Zini^c

^a Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

^b Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil

^c Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy

A R T I C L E I N F O

Article history: Received 8 November 2016 Received in revised form 21 December 2017 Accepted 20 April 2018 Available online 9 May 2018 Communicated by Michael Tsfasman

MSC: 11G20 14G50 14H55

Keywords: Weierstrass semigroups Algebraic geometric codes Codes on many points Kummer extensions

ABSTRACT

For Kummer extensions defined by $y^m = f(x)$, where f(x) is a separable polynomial over the finite field \mathbb{F}_q , we compute the number of Weierstrass gaps at two totally ramified places. For many totally ramified places we give a criterion to find pure gaps at these points and present families of pure gaps. We then apply our results to construct *n*-points algebraic geometric codes with good parameters.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), luciane@im.ufrj.br (L. Quoos), gzini@math.unifi.it (G. Zini).

1. Introduction

In the early eighties tools from algebraic geometry were applied by V. Goppa to construct linear codes using algebraic curves over finite fields, see [8]. Nowadays these codes are called algebraic–geometric codes, AG codes for short. The starting point in the construction of an AG code is a projective, absolutely irreducible, non singular algebraic curve \mathcal{X} of genus $g \geq 1$ defined over the finite field \mathbb{F}_q with cardinality q. Let $F = \mathbb{F}_q(\mathcal{X})$ be its function field with \mathbb{F}_q being the field of constants. Consider Q_1, \ldots, Q_n pairwise distinct rational places on F. Let $D = Q_1 + \cdots + Q_n$ and G be divisors such that Q_i is not in the support of G for $i = 1, \ldots, n$. The linear code $C_{\Omega}(D, G)$ is defined by

 $C_{\Omega}(D,G) = \{ (\operatorname{res}_{Q_1}(\eta), \dots, \operatorname{res}_{Q_n}(\eta)) \mid \eta \in \Omega(G-D) \} \subseteq \mathbb{F}_q^n,$

where $\Omega(G - D)$ is the space of \mathbb{F}_q -rational differentials η on \mathcal{X} such that either $\eta = 0$ or $\operatorname{div}(\eta) \succeq G - D$ and $\operatorname{res}_{Q_i} \eta$ is the residue of η at Q_j .

The code $C_{\Omega}(D,G)$ has length n and dimension k = i(G - D) - i(G) where i(G) denotes the speciality index of the divisor G. We say that $C_{\Omega}(D,G)$ is an [n, k, d]-code where d denotes the minimum distance of the code. One of the main features of this code is that its minimum distance d satisfies the classical Goppa bound, namely

$$d \ge \deg G - (2g - 2)$$

The integer $d^* = \deg G - (2g - 2)$ is usually called the *designed minimum distance*. One way to obtain codes with good parameters is to find codes that improve the designed minimum distance.

If $G = \alpha P$ for some rational place P on F and D is the sum of other rational places on \mathcal{X} , then the code $C_{\Omega}(D,G)$ is called an *one-point* AG code. Analogously, if $G = \alpha_1 P_1 + \cdots + \alpha_n P_n$ for n distinct rational places P_1, \ldots, P_n on \mathcal{X} , then $C_{\Omega}(D,G)$ is called a *n-point* AG code. For a more detailed introduction to AG codes, see [13,21].

For a one-point divisor $G = \alpha P$ on the function field F, Garcia, Kim, and Lax [6,7] improved the designed minimum distance using the arithmetical structure of the Weierstrass semigroup at the rational place P. For a two-point divisor $G = \alpha_1 P_1 + \alpha_2 P_2$, Homma and Kim [11] introduced the notion of pure gaps and obtained similar results. By choosing α_1 and α_2 satisfying certain arithmetical conditions depending on the structure of the Weierstrass semigroup at P_1 and P_2 , they improved the designed minimum distance. Matthews [17] showed that for an arbitrary curve there exist two-point AG codes that have better parameters than any comparable one-point AG code constructed from the same curve. Finally, for divisors $G = \alpha_1 P_1 + \cdots + \alpha_n P_n$ at n distinct rational places on \mathcal{X} , results from the theory of generalized Weierstrass semigroups and pure gaps were obtained by Carvalho and Torres [2]. They have been used to obtain AG codes whose minimum distance beats the classical Goppa bound on the minimum distance, see Theorem 2.4. Download English Version:

https://daneshyari.com/en/article/8895640

Download Persian Version:

https://daneshyari.com/article/8895640

Daneshyari.com