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A q-analog Pn(q) of the sum of divisors of n was introduced by 
C. Kassel and C. Reutenauer in a combinatorial setting and 
by T. Hausel, E. Letellier, F. Rodriguez-Villegas in a Hodge-
theoretic setting. We study the reduction modulo 3 of the 
polynomial Pn(q) with respect to the ideal (q2 + q + 1)F3[q].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Consider the infinite product

θ(w) := (1 − w)
∏
n≥1

(1 − qnw)
(
1 − qnw−1)

(1 − qn)2
.
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The identity

θ(uv)
θ(u)θ(v) =

∑
m,n≥0

qmnumvn −
∑

m,n≥1
qmnu−mv−n, (1)

is attributed to L. Kronecker1 [10]. The particular case of (1),

1
θ(w) − 1

1 − w
=

∑
n,m≥1

n �≡m (mod 2)

(−1)nqnm/2w(m−n−1)/2, (2)

is attributed to C. Jordan [5, p. 453].
Let Tn(w) ∈ Z 

[
w,w−1] be the coefficient of qn in the Taylor expansion of (2) at q = 0. 

Let Cn(q) ∈ Z[q] be defined by Cn(q) := (q − 1)qnTn(q). C. Kassel and C. Reutenauer 
[6,7] proved that, if q is a prime power, then there are precisely Cn(q) ideals I of the group 
algebra Fq

[
Z2] of the free abelian group of rank 2 such that the quotient Fq

[
Z2] /I is 

an n-dimensional vector space over Fq.
T. Hausel, E. Letellier and F. Rodriguez-Villegas [3] proved that Cn(q) is the 

E-polynomial of the Hilbert scheme X [n] of n points on the algebraic torus X := C××C×. 
It is natural to consider the obvious action of the group C××C× on the variety X and to 
extend this action to the punctual Hilbert scheme X [n]. Let X̃ [n] := X [n]// (C× × C×) be 
the corresponding GIT-quotient [11]. Denoting Pn(q) ∈ Z[q] the E-polynomial of X̃ [n], 
it follows, using elementary Hodge Theory [4], that (q − 1)2 Pn(q) = Cn(q).

In virtue of (2),

Pn(q) = qn−1

q − 1
∑
d|n

d odd

(
qγ(d) − q1−γ(d)

)
,

where γ(d) := 1
2
( 2n

d − d + 1
)
. Using L’Hôpital’s rule, it follows that

Pn(1) = lim
q→1

Pn(q) = σ(n),

where σ(n) is the sum of divisors of n. We called [1] Pn(q) the Kassel–Reutenauer poly-
nomials because C. Kassel and C. Reutenauer studied some of their number-theoretical 
properties [6–8]. A more informative name should be Kassel–Reutenauer q-analog of the 
sum of divisors.

It is obvious that Pn(1) is divisible by 3 if Pn(q) belongs to the principal ideal [3]qZ[q], 
where [3]q := q2+q+1 is the classical q-analog of 3. Nevertheless, the converse statement 
is not always true. In order to fix this correspondence, we will consider the reduction 
modulo 3 of the polynomials Pn(q), denoted 3Pn(q). The aim of this paper is to prove 
the following result.

1 Kronecker’s original identity is rather different, but it can be transformed into this one.
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