A group action on multivariate polynomials over finite fields

Lucas Reis ${ }^{1}$
School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa ON, K1S 5B6, Canada

A R T I C L E I N F O

Article history:

Received 14 September 2017
Received in revised form 6 January 2018
Accepted 29 January 2018
Available online xxxx
Communicated by Stephen D. Cohen

MSC:

12E20
11T55

Keywords:
Finite fields
Invariant theory
Group action
Multivariate polynomials

Abstract

Let \mathbb{F}_{q} be the finite field with q elements, where q is a power of a prime p. Recently, a particular action of the group $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ on irreducible polynomials in $\mathbb{F}_{q}[x]$ has been introduced and many questions concerning the invariant polynomials have been discussed. In this paper, we give a natural extension of this action on the polynomial ring $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ and study the algebraic properties of the invariant elements.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be a finite field with q elements, where q is a power of a prime p. Any matrix $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ induces a natural map on $\mathbb{F}_{q}[x]$. Namely, if we write $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, given

[^0]$f(x)$ of degree n we define $A \diamond f=(c x+d)^{n} f\left(\frac{a x+b}{c x+d}\right)$. It turns out that, when restricted to the set I_{n} of irreducible polynomials of degree n (for $n \geq 2$), this map is a permutation of I_{n} and, $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ acts on I_{n} via the compositions $A \diamond f$. This was first noticed by Garefalakis [5]. Recently, this action (and others related) has attracted attention from several authors (see [6], [7] and [8]), and some fundamental questions have been discussed such as the characterization and number of invariant irreducible polynomials of a given degree. The map induced by A preserves the degree of elements in I_{n} (for $n \geq 2$), but not in the whole ring $\mathbb{F}_{q}[x]$: for instance, $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ is such that $A \diamond\left(x^{n}-1\right)=(x+1)^{n}-x^{n}$ has degree at most $n-1$. However, if the "denominator" $c x+d$ is trivial, i.e., $c=0$ and $d=1$, the map induced by A preserves the degree of any polynomial and, more than that, is an $\mathbb{F}_{q^{-}}$automorphism of $\mathbb{F}_{q}[x]$. This motivates us to introduce the following: let $\mathcal{A}_{n}:=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials in n variables over \mathbb{F}_{q} and G be the subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ comprising the elements of the form $A=\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$. The set $G^{n}:=\underbrace{G \times \cdots \times G}_{n \text { times }}$, equipped with the coordinate-wise product induced by G, is a group.
The group G^{n} induces $\mathbb{F}_{q^{-}}$endomorphisms of \mathcal{A}_{n} : given $\mathbf{A} \in G^{n}, \mathbf{A}=\left(A_{1}, \ldots, A_{n}\right)$, where $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & 1\end{array}\right)$, and $f \in \mathcal{A}_{n}$, we define

$$
\mathbf{A} \circ f:=f\left(a_{1} x_{1}+b_{1}, \ldots, a_{n} x_{n}+b_{n}\right) \in \mathcal{A}_{n} .
$$

In other words, \mathbf{A} induces the \mathbb{F}_{q}-endomorphism of \mathcal{A}_{n} given by the substitutions $x_{i} \mapsto$ $a_{i} x_{i}+b_{i}$. In this paper, we show that this map induced by \mathbf{A} is an \mathbb{F}_{q}-automorphism of \mathcal{A}_{n} and, in fact, this is an action of G^{n} on the ring \mathcal{A}_{n}, such that $\mathbf{A} \circ f$ and f have the same multidegree (a natural extension of degree in several variables). It is then natural to explore the algebraic properties of the fixed elements. We define $R_{\mathbf{A}}$ as the subring of \mathcal{A}_{n} comprising the polynomials invariant by \mathbf{A}, i.e.,

$$
R_{\mathbf{A}}:=\left\{f \in \mathcal{A}_{n} \mid \mathbf{A} \circ f=f\right\}
$$

The ring $R_{\mathbf{A}}$ is frequently called the fixed-point subring of \mathcal{A}_{n} by \mathbf{A}. The study of the fixed-point subring plays an important role in the Invariant Theory of Polynomials. Observe that $R_{\mathbf{A}}$ is an \mathbb{F}_{q}-algebra and a well-known result, due to Emmy Noether, ensures that rings of invariants from the action of finite groups are always finitely generated; for more details, see Theorem 3.1.2 of [1]. In particular, $R_{\mathbf{A}}$ is finitely generated and some interesting questions arise.

- Can we find a minimal generating set $S_{\mathbf{A}}$ for $R_{\mathbf{A}}$? What about the size of $S_{\mathbf{A}}$?
- Is $R_{\mathbf{A}}$ a free $\mathbb{F}_{q^{-}}$algebra? That is, can $R_{\mathbf{A}}$ be viewed as a polynomial ring in some number of variables?

https://daneshyari.com/en/article/8895664

Download Persian Version:

https://daneshyari.com/article/8895664

Daneshyari.com

[^0]: E-mail address: lucasreismat@gmail.com.
 ${ }^{1}$ Permanent address: Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, 30123-970, Brazil.

