

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Generalized bilinear forms graphs and MRD codes over a residue class ring $\stackrel{\bigstar}{\approx}$

Li-Ping Huang

School of Math. and Statis., Changsha University of Science and Technology, Changsha, 410004, China

A R T I C L E I N F O

Article history: Received 25 September 2017 Received in revised form 18 January 2018 Accepted 19 February 2018 Available online 2 March 2018 Communicated by Anne Canteaut

MSC: 05C50 05C30 15B33 94B60

Keywords: Bilinear forms graph Residue class ring Independence number MRD code Core Maximum clique

ABSTRACT

We investigate the generalized bilinear forms graph Γ_d over a residue class ring \mathbb{Z}_{p^s} . The graph Γ_d is a connected vertex-transitive graph, and we completely determine its independence number, clique number, chromatic number and maximum cliques. We also prove that cores of both Γ_d and its complement are maximum cliques. The graph Γ_d is useful for error-correcting codes. We show that there is a largest independent set of Γ_d which is a linear MRD code over \mathbb{Z}_{p^s} .

© 2018 Elsevier Inc. All rights reserved.

 $^{^{\}pm}$ Project 11371072 supported by National Natural Science Foundation of China. $E\text{-mail}\ address:\ lipingmath@163.com.$

1. Introduction

Throughout, all graphs are simple [14] and finite. Let V(G) denote the vertex set of a graph G. For two vertices $x, y \in V(G)$, we write $x \sim y$ if x and y are adjacent. Let \mathbb{F}_q be the finite field with q elements where q is a power of a prime. The cardinality of a set X is denoted by |X|.

Let R be a commutative local ring and R^* the set of all units of R. For a subset S of R, let $S^{m \times n}$ be the set of all $m \times n$ matrices over S, and let $S^n = S^{1 \times n}$. Let $GL_n(R)$ be the set of $n \times n$ invertible matrices over R. Write ^tA as the transpose matrix of a matrix A. Denote by I_r (I for short) the $r \times r$ identity matrix, and diag (A_1, \ldots, A_k) a block diagonal matrix where A_i is an $m_i \times n_i$ matrix. Let $0_{m,n}$ (0 for short) be the $m \times n$ zero matrix and $0_n = 0_{n,n}$.

For $0 \neq A \in \mathbb{R}^{m \times n}$, by Cohn's definition [6], the *inner rank* of A, denoted by $\rho(A)$, is the least positive integer r such that A = BC where $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$. Let $\rho(0) = 0$. For $A \in \mathbb{R}^{m \times n}$, it is clear that $\rho(A) \leq \min\{m, n\}$, and $\rho(A) = 0$ if and only if A = 0. When R is a field, we have $\rho(A) = \operatorname{rank}(A)$, where $\operatorname{rank}(A)$ is the usual rank of a matrix over a field. For matrices over R, we have (cf. [6,5, Section 5.4]): $\rho(A) = \rho(PAQ)$ where P and Q are invertible matrices over R; $\rho(A+B) \leq \rho(A) + \rho(B)$; $\rho(AC) \leq \min \{\rho(A), \rho(C)\} \text{ and } \rho(A_{11}) \leq \rho \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$ For $A, B \in \mathbb{R}^{m \times n}$, the rank distance between A and B is defined by

$$d_{\mathcal{R}}(A,B) = \rho(A-B). \tag{1.1}$$

We have that $d_{B}(A, B) = 0 \Leftrightarrow A = B, d_{B}(A, B) = d_{B}(B, A)$ and $d_{B}(A, B) \leq d_{B}(A, C) + d_{B}(A, B) \leq d_{B}(A, B) \leq$ $d_{\rm R}(C, B)$, for all matrices of appropriate sizes A, B, C over R.

Let \mathbb{Z}_{p^s} denote the *residue class ring* of integers modulo p^s , where p is a prime and s is a positive integer. Then \mathbb{Z}_{p^s} is a Galois ring, a commutative local ring, a finite principal *ideal ring* (cf. [20,27]). The principal ideal (p) is the unique maximal ideal of \mathbb{Z}_{p^s} , and denoted by J_{p^s} . Note that J_{p^s} is also the Jacobson radical of \mathbb{Z}_{p^s} . When $s = 1, \mathbb{Z}_p$ is the finite field \mathbb{F}_p . We have (cf. [20,27]) that

$$|\mathbb{Z}_{p^s}| = p^s, \ |\mathbb{Z}_{p^s}^*| = (p-1)p^{s-1}, \ |J_{p^s}| = p^{s-1}.$$
 (1.2)

The residue class ring plays an important role in mathematics and information theory.

The generalized bilinear forms graph (bilinear forms graph for short) over \mathbb{F}_q , denoted by $\Gamma_d(\mathbb{F}_q^{m \times n})$, has the vertex set $\mathbb{F}_q^{m \times n}$ where $m, n \geq 2$, and two distinct vertices A and B are adjacent if rank(A - B) < d where d is fixed with $2 \le d \le \min\{m, n\}$. When $d=2, \Gamma_2(\mathbb{F}_q^{m\times n})$ is the usual bilinear forms graph over \mathbb{F}_q . The bilinear forms graph has been extensively studied (cf. [3,8,12,16,18,26,28]).

As a natural extension of the generalized bilinear forms graph over \mathbb{F}_q , the generalized bilinear forms graph (bilinear forms graph for short) over \mathbb{Z}_{p^s} , denoted by $\Gamma_d(\mathbb{Z}_{p^s}^{m \times n})$ (Γ_d for short), has vertex set $\mathbb{Z}_{p^s}^{m \times n}$ where $m, n \geq 2$, and two distinct vertices A and Download English Version:

https://daneshyari.com/en/article/8895668

Download Persian Version:

https://daneshyari.com/article/8895668

Daneshyari.com