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Frolov’s cubature formula on the unit hypercube has been 
considered important since it attains an optimal rate of 
convergence for various function spaces. Its integration nodes 
are given by shrinking a suitable full rank Z-lattice in Rd and 
taking all points inside the unit cube. The main drawback 
of these nodes is that they are hard to find computationally, 
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especially in high dimensions. In such situations, quasi-Monte 
Carlo (QMC) rules based on digital nets have proven to be 
successful. However, there is still no construction known that 
leads to QMC rules which are optimal in the same generality 
as Frolov’s.
In this paper we investigate a polynomial analog of Frolov’s 
cubature formula, which we expect to be important in this 
respect. This analog is defined in a field of Laurent series 
with coefficients in a finite field. A similar approach was 
previously studied in [M. B. Levin. Adelic constructions 
of low discrepancy sequences. Online Journal of Analytic 
Combinatorics. Issue 5, 2010.].
We show that our construction is a (t, m, d)-net, which also 
implies bounds on its star-discrepancy and the error of the 
corresponding cubature rule. Moreover, we show that our 
cubature rule is a QMC rule, whereas Frolov’s is not, and 
provide an algorithm to determine its integration nodes 
explicitly.
To this end we need to extend the notion of (t, m, d)-nets 
to fit the situation that the points can have infinite digit 
expansion and develop a duality theory. Additionally, we 
adapt the notion of admissible lattices to our setting and prove 
its significance.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider numerical integration on the d-dimensional unit cube∫
[0,1]d

ψ(x) dx

approximated by an algorithm using n function evaluations as

n∑
i=1

wiψ(xi) for wi ∈ R, xi ∈ [0, 1]d.

If the weights satisfy wi = n−1 for all i, the algorithm is called a quasi-Monte Carlo 
(QMC) rule. For QMC rules, lattice rules (i.e., QMC rules using integration lattices) 
and digital net rules (i.e., those using digital nets) have been mainly considered, see 
the books [2,22,27] and the references therein. One intensively studied class of digital 
net rules is polynomial lattice rules first proposed in [21]. Polynomial lattice rules are a 
polynomial analog of lattice rules, where polynomial analog means that R and Z lattice 
rules are replaced by a field of Laurent series Fb((x−1)) and a ring of polynomials Fb[x].

On the other hand, one important non-QMC rule is Frolov’s cubature formula, see 
Section 2. The fascinating property of this cubature rule is that, although the construc-
tion is fixed, it attains an optimal rate of convergence for various function spaces. This, 
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