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1. Introduction
1.1. Motivation

In [23], van der Poorten observed that the numbers
19,197,1979,19793, 197933, 1979339, 19793393, 197933933, 1979339339

are all prime numbers and raised a question that whether there is such an infinite chain
of prime numbers (with respect to some base b). One related question is whether there
exists the largest truncatable prime in a given base b (such a prime can yield a sequence
of primes when digits are removed away from the right). Note that the above integer
1979339339 is not a truncatable prime. The authors in [1] have given heuristic arguments
for the length of the largest truncatable prime in base b (roughly, the length is be/ log b,
where e is the base of the natural logarithm) and computed the largest truncatable
primes in base b for 3 < b < 15. Both questions might be very hard.

Mullen and Shparlinski [21, Problem 31] asked an analogous question about polyno-
mials over finite fields. More precisely, let p be an odd prime number and ¢ = p® for
some positive integer s. We denote by I, the finite field of ¢ elements, and use Fy[X] to
denote the ring of polynomials with coefficients in IFy.

For a (finite or infinite) sequence {uy}n>0, of non-zero elements in Fy, we define a
consecutive polynomial sequence { fn}n>1, associated to the sequence {u,}, in Fy[X] as
follows:

fo=up X" +...+w X +ug, n>1. (1.1)

If all the polynomials f,, n > 1, are irreducible, then the sequence {f,} is called a
consecutive irreducible polynomial sequence, and {u,} is called a consecutive irreducible
sequence.

Given a sequence {u,}, let L({uy}) be either oo if {u,} is infinite, or a non-negative
integer such that L({u,})+1 is the length of {w, }. That is, L({u,}) is the length of the
associated polynomial sequence { f,}.

Mullen and Shparlinski [21, Problem 31] asked for lower and upper bounds for the
maximum length L(q) = max{L({u,})} (possibly infinite), where {u,,} runs through all
consecutive irreducible sequences over Fy. The only known result is a lower bound due
to Chow and Cohen [4, Theorem 1.2],

log q
L(g) > —=1 | 1.2
(9) SToglog (1.2)
whenever g # 3; they also observed that for ¢ = 3, L(3) = 3.
The work on irreducible polynomials with prescribed coefficients might reflect that
such an upper bound of L(q) indeed exists. Twenty years ago, Hansen and Mullen [13,
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