Explicit evaluation of Walsh transforms of a class of Gold type functions *

Ayhan Cosgun
Department of Mathematics, Middle East Technical University, Dumlupinar Bul., No:1, 06800, Ankara, Turkey

A R T I C L E I N F O

Article history:

Received 22 April 2017
Received in revised form 22
September 2017
Accepted 10 November 2017
Available online xxxx
Communicated by Gary McGuire

MSC:

06E30
11D09
11T24
12 E 20

Keywords:

Finite fields
Quadratic forms
Gold type functions
Walsh transform

Abstract

Let $K=\mathbb{F}_{2^{k}}$ denote the finite field of 2^{k} elements. The Walsh transform of a class of Gold type functions $f(x)=$ $\operatorname{Tr}_{K}\left(x^{2^{a}+1}+x^{2^{b}+1}\right), 0 \leq a<b$ at $\alpha \in K$ is determined in recent results of Lahtonen et al. (2007) [7], Roy (2012) [10] and Coşgun et al. (2016) [2] under some restrictions on k, a, b and α. In this paper, we give explicit evaluation of the Walsh transforms of f without any restriction on k, a, b and α. Therefore we improve and generalize the related results in literature. Furthermore, we evaluate the Walsh transform of a more general Gold type function $f_{\gamma}(x)=\operatorname{Tr}_{K}\left(\gamma x^{2^{a}+1}+\gamma x^{2^{b}+1}\right)$, $0 \leq a<b$ at $\alpha \in K$ for any $\gamma \in \mathbb{F}_{2^{k}} \cap \mathbb{F}_{2^{b-a}}$ without any restriction on k, a, b and α.

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let f be a Boolean function $f: V_{k} \longrightarrow \mathbb{F}_{2}$, where V_{k} is a k-dimensional vector space over \mathbb{F}_{2}. The Walsh transform (or Walsh-Hadamard transform) of f at α is the function $f^{W}: V_{k} \longrightarrow \mathbb{Z}$ defined by

$$
\begin{equation*}
f^{W}(\alpha)=\sum_{x \in V_{k}}(-1)^{f(x)+\langle\alpha, x\rangle} \tag{1}
\end{equation*}
$$

where $\langle\alpha, x\rangle$ denotes an (non-degenerate) inner product on V_{k}. We refer, for example, to [1] for more details on Walsh transform for Boolean functions.

Let $V_{k}=K$ where $K=\mathbb{F}_{2^{k}}$ denotes the finite field of 2^{k} elements and let Tr_{K} denote the absolute trace map from K to \mathbb{F}_{2}. Then a natural choice for $\langle\alpha, x\rangle$ is $\operatorname{Tr}_{K}(\alpha x)$ and equation (1) becomes

$$
\begin{equation*}
f^{W}(\alpha)=\sum_{x \in K}(-1)^{f(x)+\operatorname{Tr}_{K}(\alpha x)} \tag{2}
\end{equation*}
$$

The Walsh spectrum of a Boolean function $f: K \longrightarrow \mathbb{F}_{2}$ is defined to be the set

$$
\left\{f^{W}(\alpha): \alpha \in K\right\}
$$

When the spectrum is precisely $\left\{ \pm 2^{\frac{k}{2}}\right\}, f$ is called bent function. For an integer $0 \leq r \leq k$, a function $f: K \longrightarrow \mathbb{F}_{2}$ is called r-plateaued if its Walsh spectrum is $\left\{0, \pm 2^{\frac{1}{2}(k+r)}\right\}$. Bent functions have significance due to their applications in cryptography and r-plateaued functions gain interest as they can be used to construct bent functions (see [7,10] for instance).

Gold functions

$$
f(x)=\operatorname{Tr}_{K}\left(x^{2^{a}+1}\right), \text { with } \operatorname{gcd}(a, k)=1 \text { and } k \text { is odd },
$$

are introduced in [4] and this family is a famous example of functions having 3 -valued Walsh spectrum. Gold [4] determined $f^{W}(\alpha)$ in terms of $f^{W}(1)$ and $f^{W}(1)$ is evaluated first in [3] and then in [7]. Furthermore, more general Gold functions are studied in the appendix of [3]. With the hypothesis that a is relatively prime to k and k is odd, Gold functions have the spectrum $\left\{0, \pm 2^{\frac{(k+1)}{2}}\right\}$ (i.e. they are 1-plateaued).

In this paper we deal with the Walsh transforms of Gold type functions. Without loss of generality we assume $0 \leq a<b$ ($a=b$ is a trivial case) and by a Gold type function we mean

$$
f(x)=\operatorname{Tr}_{K}\left(x^{2^{a}+1}+x^{2^{b}+1}\right)
$$

Gold type functions were studied by various authors in literature. For instance, in [7], Lahtonen, McGuire and Ward give $f^{W}(0)$ for

https://daneshyari.com/en/article/8895681

Download Persian Version:

https://daneshyari.com/article/8895681

Daneshyari.com

[^0]: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

 E-mail address: ayhan.cosg@gmail.com.

