

Contents lists available at ScienceDirect

Finite Fields and Their Applications

FINITE FIELDS

www.elsevier.com/locate/ffa

Explicit evaluation of Walsh transforms of a class of Gold type functions $\stackrel{\bigstar}{\approx}$

Ayhan Coşgun

Department of Mathematics, Middle East Technical University, Dumlupinar Bul., No:1, 06800, Ankara, Turkey

ARTICLE INFO

Article history: Received 22 April 2017 Received in revised form 22 September 2017 Accepted 10 November 2017 Available online xxxx Communicated by Gary McGuire

MSC: 06E30 11D09 11T24 12E20

Keywords: Finite fields Quadratic forms Gold type functions Walsh transform

ABSTRACT

Let $K = \mathbb{F}_{2^k}$ denote the finite field of 2^k elements. The Walsh transform of a class of Gold type functions $f(x) = \operatorname{Tr}_K \left(x^{2^a+1} + x^{2^b+1}\right), \ 0 \leq a < b$ at $\alpha \in K$ is determined in recent results of Lahtonen et al. (2007) [7], Roy (2012) [10] and Cosgun et al. (2016) [2] under some restrictions on k, a, b and α . In this paper, we give explicit evaluation of the Walsh transforms of f without any restriction on k, a, b and α . Therefore we improve and generalize the related results in literature. Furthermore, we evaluate the Walsh transform of a more general Gold type function $f_{\gamma}(x) = \operatorname{Tr}_K \left(\gamma x^{2^a+1} + \gamma x^{2^b+1}\right), 0 \leq a < b$ at $\alpha \in K$ for any $\gamma \in \mathbb{F}_{2^k} \cap \mathbb{F}_{2^{b-a}}$ without any restriction on k, a, b and α .

© 2017 Elsevier Inc. All rights reserved.

E-mail address: ayhan.cosg@gmail.com.

https://doi.org/10.1016/j.ffa.2017.11.005 1071-5797/© 2017 Elsevier Inc. All rights reserved.

 $^{\,\,^{\,\,\}alpha}\,$ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

1. Introduction

Let f be a Boolean function $f: V_k \longrightarrow \mathbb{F}_2$, where V_k is a k-dimensional vector space over \mathbb{F}_2 . The Walsh transform (or Walsh-Hadamard transform) of f at α is the function $f^W: V_k \longrightarrow \mathbb{Z}$ defined by

$$f^{W}(\alpha) = \sum_{x \in V_{k}} (-1)^{f(x) + \langle \alpha, x \rangle}$$
(1)

where $\langle \alpha, x \rangle$ denotes an (non-degenerate) inner product on V_k . We refer, for example, to [1] for more details on Walsh transform for Boolean functions.

Let $V_k = K$ where $K = \mathbb{F}_{2^k}$ denotes the finite field of 2^k elements and let Tr_K denote the absolute trace map from K to \mathbb{F}_2 . Then a natural choice for $\langle \alpha, x \rangle$ is $\operatorname{Tr}_K(\alpha x)$ and equation (1) becomes

$$f^{W}(\alpha) = \sum_{x \in K} (-1)^{f(x) + \operatorname{Tr}_{K}(\alpha x)}.$$
(2)

The Walsh spectrum of a Boolean function $f: K \longrightarrow \mathbb{F}_2$ is defined to be the set

$$\left\{f^W(\alpha): \alpha \in K\right\}.$$

When the spectrum is precisely $\left\{\pm 2^{\frac{k}{2}}\right\}$, f is called *bent function*. For an integer $0 \leq r \leq k$, a function $f: K \longrightarrow \mathbb{F}_2$ is called *r*-plateaued if its Walsh spectrum is $\left\{0,\pm 2^{\frac{1}{2}(k+r)}\right\}$. Bent functions have significance due to their applications in cryptography and *r*-plateaued functions gain interest as they can be used to construct bent functions (see [7,10] for instance).

Gold functions

$$f(x) = \operatorname{Tr}_{K}\left(x^{2^{a}+1}\right)$$
, with $\operatorname{gcd}\left(a,k\right) = 1$ and k is odd,

are introduced in [4] and this family is a famous example of functions having 3-valued Walsh spectrum. Gold [4] determined $f^W(\alpha)$ in terms of $f^W(1)$ and $f^W(1)$ is evaluated first in [3] and then in [7]. Furthermore, more general Gold functions are studied in the appendix of [3]. With the hypothesis that a is relatively prime to k and k is odd, Gold functions have the spectrum $\left\{0, \pm 2^{\frac{(k+1)}{2}}\right\}$ (i.e. they are 1-plateaued).

In this paper we deal with the Walsh transforms of Gold type functions. Without loss of generality we assume $0 \le a < b$ (a = b is a trivial case) and by a Gold type function we mean

$$f(x) = \operatorname{Tr}_K \left(x^{2^a + 1} + x^{2^b + 1} \right).$$

Gold type functions were studied by various authors in literature. For instance, in [7], Lahtonen, McGuire and Ward give $f^{W}(0)$ for

Download English Version:

https://daneshyari.com/en/article/8895681

Download Persian Version:

https://daneshyari.com/article/8895681

Daneshyari.com