

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Kronecker–Halton sequences in $\mathbb{F}_p((X^{-1}))$

Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

ARTICLE INFO

Article history: Received 20 September 2017 Received in revised form 13 November 2017 Accepted 13 November 2017 Available online xxxx Communicated by Arne Winterhof

MSC: 11K31 11K38

Keywords: Hybrid sequences Digital Kronecker sequences Halton-type sequences Discrepancy

ABSTRACT

In this paper we investigate the distribution properties of hybrid sequences which are made by combining Halton sequences in the ring of polynomials and digital Kronecker sequences. We give a full criterion for the uniform distribution and prove results on the discrepancy of such hybrid sequences.

© 2017 Elsevier Inc. All rights reserved.

1. Preliminaries

Let $(\boldsymbol{z}_n)_{n\geq 0}$ be a sequence in the *s*-dimensional unit cube $[0,1)^s$, then the *discrepancy* D_N of the first N points of the sequence is defined by

$$D_N = \sup_{B \subseteq [0,1)^s} \left| \frac{A_N(B)}{N} - \lambda(B) \right|$$

 $\label{eq:https://doi.org/10.1016/j.ffa.2017.11.006} $1071-5797 @ 2017 Elsevier Inc. All rights reserved.$

E-mail address: roswitha.hofer@jku.at.

where

$$A_N(B) := \#\{n : 0 \le n < N, \boldsymbol{z}_n \in B\},\$$

 λ is the s-dimensional Lebesgue measure and the supremum is taken over all axis-parallel subintervals $B \subseteq [0,1)^s$. When restricting the supremum over all axis-parallel subintervals with the lower left point in the origin, then we obtain the star discrepancy D_N^* of the first N points of the sequence. It is easy to see that $D_N^* \leq D_N \leq 2^s D_N^*$. The sequence $(\mathbf{z}_n)_{n\geq 0}$ is called uniformly distributed if $\lim_{N\to\infty} D_N = 0$.

It is frequently conjectured in the theory of irregularities of distribution, that for every sequence $(\boldsymbol{z}_n)_{n\geq 0}$ in $[0,1)^s$ we have

$$D_N \ge c_s \frac{\log^s N}{N}$$

for a constant $c_s > 0$ and for infinitely many N. In the following we will abbreviate this to $D_N \gg_s \frac{\log^s N}{N}$. Therefore sequences whose discrepancy satisfies $D_N \leq C_s \log^s N/N$ for all N > 1 with a constant $C_s > 0$ that is independent of N (or $D_N \ll_s \log^s N/N$), are called *low-discrepancy sequences*.

Well-known examples of low-discrepancy sequences are the s-dimensional Halton sequences, digital (t, s)-sequences, and one-dimensional Kronecker sequences $(\{n\alpha\})_{n\geq 0}$ with α irrational and having bounded continued fraction coefficients. For the sake of completeness we define the Halton sequences, the Kronecker sequences, and the digital (t, s)-sequences.

For the Halton sequence [7] $(\boldsymbol{y}_n)_{n\geq 0}$ we choose *s* different pairwise coprime bases $b_1, \ldots, b_s \geq 2$ and construct the *i*th component $y_n^{(i)}$ of the *n*th point $\boldsymbol{y}_n = (y_n^{(1)}, \ldots, y_n^{(s)})$ by representing $n = n_0^{(i)} + n_1^{(i)}b_i + n_2^{(i)}b_i^2 + \cdots$ in base b_i with $0 \leq n_j^{(i)} < b_i$ and set

$$y_n^{(i)} = n_0^{(i)}/b_i + n_1^{(i)}/b_i^2 + n_2^{(i)}/b_i^3 + \cdots$$

The s-dimensional Kronecker sequence related to the real numbers $\alpha_1, \ldots, \alpha_s$ is defined by $(\boldsymbol{x}_n = (\{n\alpha_1\}, \ldots, \{n\alpha_s\}))_{n\geq 0}$, where $\{\cdot\}$ denotes the fractional part operation. It is well-known to be uniformly distributed if and only if $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over \mathbb{Q} .

For the digital (t, s)-sequences in the sense of Niederreiter [28] we start with the more general, digital (T, s)-sequences in the sense of Larcher and Niederreiter, see [22].

Definition 1. Choose $s, \mathbb{N} \times \mathbb{N}_0$ -matrices $C^{(1)}, \ldots, C^{(s)}$ over \mathbb{F}_p, p prime. To generate the *i*th coordinate $x_n^{(i)}$ of \boldsymbol{x}_n , represent the integer n in base p

$$n = n_0 + n_1 p + \dots + n_r p^r$$
 with $0 \le n_j < p$,

Download English Version:

https://daneshyari.com/en/article/8895688

Download Persian Version:

https://daneshyari.com/article/8895688

Daneshyari.com