Journal of Algebra 513 (2018) 1--26

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Asymptotic vanishing of homogeneous components of multigraded modules and its applications

ALGEBRA

Futoshi Hayasaka

Department of Environmental and Mathematical Sciences, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan

ARTICLE INFO

Article history: Received 8 February 2017 Available online 30 July 2018 Communicated by Bernd Ulrich

MSC: primary 13B22 secondary 13A30

Keywords: Multigraded modules Spread Integral closure Monomial ideals

ABSTRACT

In this article, we give a condition on the vanishing of finitely many homogeneous components which must imply the asymptotic vanishing for multigraded modules. We apply our result to multi-Rees algebras of ideals. As a consequence, we obtain a result on normality of monomial ideals, which extends and improves the results of Reid, Roberts and Vitulli [14], Singla [16], and Sarkar and Verma [15].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let (A, \mathfrak{m}) be a Noetherian local ring with the maximal ideal \mathfrak{m} and let R be a Noetherian standard \mathbb{N}^r -graded ring with $R_0 = A$, i.e., R is generated in degrees e_1, \ldots, e_r over A with $R_{e_i} \neq (0)$ for all $i = 1, \ldots, r$. Let M be a finitely generated \mathbb{Z}^r -graded R-module and let N be a graded R-submodule of M. In this article, we study the asymptotic vanishing property of homogeneous components $[M/N]_n$ of the quotient M/N. Particularly, we give a condition on the vanishing.

E-mail address: hayasaka@okayama-u.ac.jp.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.07.022} 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

Our main motivation comes from the following facts on the normality of monomial ideals. Let $S = k[X_1, \ldots, X_d]$ be a polynomial ring over a field k and let I be a monomial ideal in S. In 2003, Reid, Roberts and Vitulli [14] proved that if I, I^2, \ldots, I^{d-1} are integrally closed, then all the powers of I are integrally closed, i.e., I is a normal ideal. In 2007, Singla improved this result. Let $\ell = \lambda(I)$ be the analytic spread of I. Then Singla [16] proved that I is a normal ideal if $I, I^2, \ldots, I^{\ell-1}$ are integrally closed. Note that the inequality $\ell \leq d$ always holds true. On the other hand, more recently, Sarkar and Verma [15] gave the other generalization of the original result of Reid, Roberts and Vitulli [14]. Let I_1, \ldots, I_r be (X_1, \ldots, X_d) -primary monomial ideals in S. They proved that if $I^n = I_1^{n_1} \cdots I_r^{n_r}$ is integrally closed for any $n \in \mathbb{N}^r$ with $1 \leq |n| \leq d-1$, where $|\boldsymbol{n}| = n_1 + \cdots + n_r$ denotes the sum of all entries of a vector $\boldsymbol{n} = (n_1, \ldots, n_r) \in \mathbb{N}^r$, then all the power products I^n are integrally closed. Thus, the original result of Reid, Roberts and Vitulli [14] was partially generalized to finitely many monomial ideals. The approach in [15] is different from the ones in [14,16]. In [15], the authors used the local cohomology modules of the multi-Rees algebra $\mathcal{R}(I)$ of ideals I_1, \ldots, I_r and its normalization $\overline{\mathcal{R}}(I)$ instead of convex geometry as in [14,16].

The purpose of this article is to extend and improve all of the above results with a more general approach inspired by [15]. In order to state our results, let us recall some notations associated to multigraded modules.

For a Noetherian standard \mathbb{N}^r -graded ring R with $R_0 = A$, let $R_{++} = R_e R$ be the irrelevant ideal of R where $e = e_1 + \cdots + e_r = (1, \ldots, 1) \in \mathbb{N}^r$. Let $R_+ = (R_{e_1}, \ldots, R_{e_r})R$. Note that $R_{++} = R_+$ when r = 1. Let $\mathfrak{M} = \mathfrak{m}R + R_+$ be the homogeneous maximal ideal of R. For a finitely generated R-module M, we set

$$\operatorname{Supp}_{++}(M) = \{ P \in \operatorname{Spec} R \mid M_P \neq (0), P \text{ is graded and } R_{++} \nsubseteq P \}.$$

Then the spread s(M) of M introduced by Kirby and Rees [10] is defined to be

$$s(M) = \dim \operatorname{Supp}_{++}(M/\mathfrak{m}M) + 1.$$

Here we set dim $\emptyset = -1$. Note that for an ideal I in A, the spread $s(\mathcal{R}(I))$ of the Rees algebra of I is just the analytic spread $\lambda(I)$ of the ideal I. For any $i = 1, \ldots, r$, let

$$a^{i}(M) = \sup\{k \in \mathbb{Z} \mid [H_{\mathfrak{M}}^{\dim M}(M)]_{\mathbf{n}} \neq (0) \text{ for some } \mathbf{n} \in \mathbb{Z}^{r} \text{ with } n_{i} = k\},\$$

where $H^i_{\mathfrak{M}}(M)$ is the *i*th local cohomology module of M with respect to \mathfrak{M} in the category of \mathbb{Z}^r -graded R-modules. Then the **a**-invariant vector is defined to be

$$\boldsymbol{a}(M) = (a^1(M), \dots, a^r(M)) \in \mathbb{Z}^r.$$

Then our main result can be stated as follows.

Download English Version:

https://daneshyari.com/en/article/8895722

Download Persian Version:

https://daneshyari.com/article/8895722

Daneshyari.com