Journal of Algebra 512 (2018) 1-19

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Lefschetz invariants and Young characters for representations of the hyperoctahedral groups

ALGEBRA

Fumihito Oda^a, Yugen Takegahara^{b,*,1}, Tomoyuki Yoshida^c

^a Department of Mathematics, Kindai University, Higashi-Osaka, 577-8502, Japan

^b Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan

^c Graduate School of Economics, Hokusei Gakuen University, 2-3-1,

Ohyachi-Nishi, Atsubetsu-ku, Sapporo 004-8631, Japan

ARTICLE INFO

Article history: Received 27 April 2017 Available online 5 July 2018 Communicated by M. Broué

MSC: primary 19A22 secondary 20B30, 20B35, 20C15, 20C30

Keywords: Burnside ring Character ring Hyper octahedral group Lefschetz invariant Parabolic subgroup Sign character Symmetric group Young subgroup

ABSTRACT

The ring $R(B_n)$ of virtual \mathbb{C} -characters of the hyperoctahedral group B_n has two \mathbb{Z} -bases consisting of permutation characters, and the ring structure associated with each basis of them defines a partial Burnside ring of which $R(B_n)$ is a homomorphic image. In particular, the concept of Young characters of B_n arises from a certain set \mathcal{U}_n of subgroups of B_n , and the \mathbb{Z} -basis of $R(B_n)$ consisting of Young characters, which is presented by L. Geissinger and D. Kinch [7], forces $R(B_n)$ to be isomorphic to a partial Burnside ring $\Omega(B_n, \mathcal{U}_n)$. The linear \mathbb{C} -characters of B_n are analyzed with reduced Lefschetz invariants which characterize the unit group of $\Omega(B_n, \mathcal{U}_n)$. The parabolic Burnside ring $\mathcal{PB}(B_n)$ is a subring of $\Omega(B_n, \mathcal{U}_n)$, and the unit group of $\mathcal{PB}(B_n)$ is isomorphic to the four group. The unit group of the parabolic Burnside ring of the evensigned permutation group D_n is also isomorphic to the four group.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.jalgebra.2018.07.001 \\ 0021-8693/© 2018 Elsevier Inc. All rights reserved.$

E-mail addresses: odaf@math.kindai.ac.jp (F. Oda), yugen@mmm.muroran-it.ac.jp (Y. Takegahara), ytomoyuki@mub.biglobe.ne.jp (T. Yoshida).

¹ This work was supported by JSPS KAKENHI Grant Number JP16K05052.

1. Introduction

Let G be a finite group, and let G-set be the category of finite left G-sets and G-equivariant maps. The Burnside ring $\Omega(G)$, which is the Grothendieck ring of the category G-set, is the commutative unital ring consisting of all Z-linear combinations of isomorphism classes [X] of finite left G-sets X with disjoint union for addition and cartesian product for multiplication. We denote by R(G) the ring of virtual \mathbb{C} -characters of G. Set $[n] = \{1, 2, \ldots, n\}$, and let S_n be the symmetric group on [n]. We denote by \mathcal{Y}_n the set of Young subgroups of S_n , which is closed under intersection and conjugation. By [15, §7], $\Omega(S_n)$ possesses the partial Burnside ring $\Omega(S_n, \mathcal{Y}_n)$ relative to the Young subgroups as a subring, and $\Omega(S_n, \mathcal{Y}_n) \cong R(S_n)$. This fact means that the characters $1_V^{S_n}$ induced from the trivial characters 1_Y of Y for $Y \in \mathcal{Y}_n$ form a \mathbb{Z} -basis of $R(S_n)$ (see, e.g., [2, Proposition 3]). Let C_2 be a cyclic group of order 2, and let V_n be the direct product $C_2^{(n)}$ of n copies of C_2 . We denote by B_n the hyperoctahedral group, that is, the wreath product $C_2 \wr S_n$ defined to be a semidirect product $V_n \rtimes S_n$ of V_n with S_n . Let \mathcal{Z}_n be the set of all products KY of $K \leq V_n$ and $Y \in \mathcal{Y}_n$ with $|V_n : K| \leq 2$ and $Y \leq N_{S_n}(K)$. We establish in §3 that $R(B_n)$ is a homomorphic image of the partial Burnside ring $\Omega(B_n, \widetilde{Z}_n)$ relative to the set \widetilde{Z}_n of intersections of subgroups contained in \mathcal{Z}_n .

For a ring R, we denote by R^{\times} the unit group of R. By [13, Example 2], $R(S_n)^{\times}$ is isomorphic to the four group. There exists a unit of $\Omega(S_n, \mathcal{Y}_n)$ which enables us to describe the sign character $\operatorname{sgn}_n : S_n \to \mathbb{C}$ as a \mathbb{Z} -linear combination of the characters $1_Y^{S_n}$ for $Y \in \mathcal{Y}_n$ (see [2, Corollary 2] and [9, §4]); such a description is called Solomon's formula. The ring $R(B_n)$ includes exactly four linear \mathbb{C} -characters, and $R(B_n)^{\times}$ is generated by the nontrivial linear \mathbb{C} -characters and -1_{B_n} . In §4 we identify $R(B_n)^{\times}$ with a subgroup of $\Omega(B_n, \widetilde{\mathcal{Z}}_n)^{\times}$, and then describe the linear \mathbb{C} -characters of B_n as \mathbb{Z} -linear combinations of the characters $1_H^{B_n}$ for $H \in \mathcal{Z}_n$.

There is a set \mathcal{U}_n of subgroups of B_n such that the characters $1_H^{B_n}$ for $H \in \mathcal{U}_n$ form a \mathbb{Z} -basis of $R(B_n)$ (cf. [7, Corollary II.4]). In §5 we define the partial Burnside ring $\Omega(B_n, \mathcal{U}_n)$ relative to the Young subgroups of B_n , which is a subring of $\Omega(B_n)$ isomorphic to $R(B_n)$. The parabolic Burnside ring $\mathcal{PB}(B_n)$ (cf. [1, §4]) is a subring of $\Omega(B_n, \mathcal{U}_n)$. By [4, (66.29) Corollary], the sign character $\varepsilon_n : B_n \to \mathbb{C}$ is described as a \mathbb{Z} -linear combination of the characters $1_H^{B_n}$ for parabolic subgroups H of B_n , whence $\mathcal{PB}(B_n)$ includes a unit α_n corresponding to $\varepsilon_n : B_n \to \mathbb{C}$. There also is a unit β_n of $\Omega(B_n, \mathcal{U}_n)$ corresponding to a natural extension of $\operatorname{sgn}_n : S_n \to \mathbb{C}$ to B_n such that $\alpha_n\beta_n$ corresponds to the restriction of $\operatorname{sgn}_{2n} : S_{2n} \to \mathbb{C}$ to B_n . By the description of β_n in terms of the characters $1_H^{B_n}$ for $H \in \mathcal{Z}_n \cap \mathcal{U}_n$, we have

$$\beta_n \in \Omega(B_n, \widetilde{\mathcal{Z}}_n)^{\times} \cap (\Omega(B_n, \mathcal{U}_n)^{\times} - \mathcal{PB}(B_n)^{\times}),$$

which proves $\mathcal{PB}(B_n)^{\times}$ to be isomorphic to the four group.

Download English Version:

https://daneshyari.com/en/article/8895748

Download Persian Version:

https://daneshyari.com/article/8895748

Daneshyari.com