Journal of Algebra 512 (2018) 81–91

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The quadratic type of the 2-principal indecomposable modules of the double covers of alternating groups

ALGEBRA

John Murray

Department of Mathematics & Statistics, National University of Ireland Maynooth, Co Kildare, Ireland

ARTICLE INFO

Article history: Received 4 April 2018 Available online 17 July 2018 Communicated by Gunter Malle

MSC: 20C30 20C20

Keywords: Alternating group Principal indecomposable module Dual module Quadratic form Characteristic 2 Involution

ABSTRACT

The principal indecomposable modules of the double cover $2.\mathcal{A}_n$ of the alternating group over a field of characteristic 2 are enumerated using the partitions of n into distinct parts. We determine which of these modules afford a non-degenerate $2.\mathcal{A}_n$ -invariant quadratic form. Our criterion depends on the alternating sum and the number of odd parts of the corresponding partition.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recall that an element of a finite group G is said to be 2-regular if it has odd order and real if it is conjugate to its inverse. Moreover a real element is strongly real if it is

 $\label{eq:https://doi.org/10.1016/j.jalgebra.2018.06.034} 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

E-mail address: John.Murray@mu.ie.

inverted by an involution and otherwise it is said to be weakly real. If k is a field, then a kG-module is said to have quadratic type if it affords a non-degenerate G-invariant k-valued quadratic form. The following is a recent result of R. Gow and the author [3]:

Proposition 1. Suppose that k is an algebraically closed field of characteristic 2. Then for any finite group G, the number of isomorphism classes of quadratic type principal indecomposable kG-modules is equal to the number of strongly real 2-regular conjugacy classes of G.

Our focus here is on the double cover $2.\mathcal{A}_n$ of the alternating group \mathcal{A}_n . All real 2-regular elements of \mathcal{A}_n are strongly real. So every self-dual principal indecomposable $k\mathcal{A}_n$ -module has quadratic type. On the other hand, $2.\mathcal{A}_n$ may have real 2-regular elements which are not strongly real. In this note we determine which principal indecomposable $k(2.\mathcal{A}_n)$ -modules have quadratic type.

Let S_n be the symmetric group of degree n and let $\mathcal{D}(n)$ be the set of partitions of nwhich have distinct parts. In [6, 11.5] G. James constructed an irreducible kS_n -module D^{μ} for each partition $\mu \in \mathcal{D}(n)$. Moreover, he showed that the D^{μ} are pairwise nonisomorphic, and every irreducible kS_n -modules is isomorphic to some D^{μ} .

As \mathcal{A}_n has index 2 in \mathcal{S}_n , Clifford theory shows that the restriction $D^{\mu} \downarrow_{\mathcal{A}_n}$ is either irreducible or splits into a direct sum of two non-isomorphic irreducible $k\mathcal{A}_n$ -modules. Moreover, every irreducible $k\mathcal{A}_n$ -module is a direct summand of some $D^{\mu} \downarrow_{\mathcal{A}_n}$.

D. Benson determined [1] which $D^{\mu} \downarrow_{\mathcal{A}_n}$ are reducible and we recently determined [8] when the irreducible direct summands of $D^{\mu} \downarrow_{\mathcal{A}_n}$ are self-dual (see below for details). Throughout this paper we use D^{μ}_A to denote an irreducible direct summand of $D^{\mu} \downarrow_{\mathcal{A}_n}$.

As the centre of $2.\mathcal{A}_n$ acts trivially on any irreducible module, D^{μ}_A can be considered as an irreducible $k(2.\mathcal{A}_n)$ -module, and all irreducible $k(2.\mathcal{A}_n)$ -modules arise in this way.

The alternating sum of a partition μ is $|\mu|_a := \sum (-1)^{j+1} \mu_j$. We use $\ell_o(\mu)$ to denote the number of odd parts in μ . So $|\mu|_a \equiv \ell_o(\mu) \pmod{2}$ and $|\mu|_a \ge \ell_o(\mu)$, if μ has distinct parts. Our result is:

Theorem 2. Let μ be a partition of n into distinct parts and let P^{μ} be the projective cover of the simple $k(2.\mathcal{A}_n)$ -module $D^{\mu}_{\mathcal{A}}$. Then P^{μ} has quadratic type if and only if

$$\frac{n-|\mu|_a}{2} \le 4m \le \frac{n-\ell_o(\mu)}{2}, \quad \text{for some integer } m.$$

Note that P^{μ} is a principal indecomposable $k(2.\mathcal{A}_n)$ -module, but is not a $k\mathcal{A}_n$ -module. Throughout the paper all our modules are left modules. Download English Version:

https://daneshyari.com/en/article/8895755

Download Persian Version:

https://daneshyari.com/article/8895755

Daneshyari.com