

Journal of Algebra 511 (2018) 102-113

The Witt group of a discretely valued field

Jón Kr. Arason

ARTICLE INFO

Article history: Received 30 January 2018 Available online 30 June 2018 Communicated by Luchezar L. Avramov

Keywords: Quadratic forms Witt groups Discrete valuations

ABSTRACT

This note provides an extension of a classical result of Springer in the Algebraic Theory of Quadratic Forms for discretely valued fields to the dyadic case.

© 2018 Elsevier Inc. All rights reserved.

In this note we shall study the relationship between the Witt group of quadratic forms over a discretely valued field and its residue class field.

The non-dyadic case is well known. The dyadic case, for more general valuations, has been studied in various papers. Examples are [4] and [2]. Here we restrict to discrete valuations of rank one and get more definitive results. Furthermore, our results are expressed in a new way.

For a commutative ring R we denote by W(R) the Witt ring of symmetric bilinear forms and by $W_q(R)$ the Witt group of quadratic forms over R. We recall that $W_q(R)$ is a W(R)-module in a natural way. For exact definitions and general facts consult, for example, Baeza's book [3].

If 2 is invertible in R then $W_q(R)$ can be identified with the additive group of W(R). We do it by letting the quadratic form $x \mapsto b(x, x)$ correspond to a given symmetric bilinear form b. (This differs from the choice in [3], (I.1.6).)

 $\label{eq:https://doi.org/10.1016/j.jalgebra.2018.05.036} 0021\mbox{-}8693 \mbox{\ensuremath{\odot}} \mbox{2018 Elsevier Inc. All rights reserved.}$

E-mail address: jka@hi.is.

In what follows K is a field and ν is a valuation of K with value group **Z**. We denote by **o** the valuation ring of ν , by **m** the maximal ideal of **o**, and by $\mathbf{k} = \mathbf{o}/\mathbf{m}$ the residue class field.

We choose a prime element π in **o**.

A well known generalized version of a theorem of Springer says that there is a short exact sequence $0 \to W(\mathbf{o}) \to W(K) \to W(\mathbf{k}) \to 0$ of additive groups, where the former morphism is the natural one and the latter one only depends on the choice of π . (See [6], remark after (IV.1.3).)

If ν is not dyadic then one can, using our identifications, think of this as an exact sequence $0 \to W_q(\mathbf{o}) \to W_q(K) \to W_q(\mathbf{k}) \to 0$ of Witt groups. We shall see that in general there is a natural subgroup $W_q(K)_{tame}$ of $W_q(K)$ containing $W_q(\mathbf{o})$ and a short exact sequence

$$0 \to W_q(\mathbf{o}) \to W_q(K)_{tame} \to W_q(\mathbf{k}) \to 0$$

of groups, where the former morphism is the inclusion and the latter one is a second residue class morphism corresponding to π . In the non-dyadic case $W_q(K)_{tame} = W_q(K)$ and the sequence is the one already mentioned.

It remains to describe $W_q(K)/W_q(K)_{tame}$ in the dyadic case. We note that there are two subcases depending on the characteristic of K: The mixed characteristic case, where char(K) = 0, and the characteristic 2 case, where char(K) = 2.

We shall see that there is a natural ascending filtration

$$W_q(K)_0 \subseteq W_q(K)_1 \subseteq W_q(K)_2 \subseteq \cdots$$

of $W_q(K)$ by subgroups $W_q(K)_n$ with $W_q(K)_0 = W_q(K)_{tame}$. This filtration is finite in the mixed characteristic case but infinite in the characteristic 2 case. Moreover, we shall describe the quotients $W_q(K)_n/W_q(K)_{n-1}$ for $n \ge 1$ in terms of **k**.

More precisely, our main results are as follows.

Theorem 1. Let $W_q(K)_{tame} = W(K)W_q(\mathbf{o})$. Then there is a short exact sequence

$$0 \to W_q(\mathbf{o}) \to W_q(K)_{tame} \to W_q(\mathbf{k}) \to 0$$

of groups, where the former morphism is the inclusion but the latter one depends on the choice of π .

Theorem 2. Assume that char(K) = 0 but $char(\mathbf{k}) = 2$. Write $e = \nu(2)$.

There is a natural ascending filtration

$$W(K)_{tame} = W_q(K)_0 \subseteq W_q(K)_1 \subseteq \dots \subseteq W_q(K)_{2e} = W_q(K)$$

of the group $W_q(K)$.

Download English Version:

https://daneshyari.com/en/article/8895794

Download Persian Version:

https://daneshyari.com/article/8895794

Daneshyari.com