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Abstract

Let L be a finite dimensional nilpotent Leibniz algebra such that dim(L) = n and
dim(L?) = m # 0. In this paper, we prove dim(H Lz (L)) < (n+m—2)(n—m) —m+2, where
HL5(L) is the second Leibniz homology of L. As a consequence, for a non-abelian nilpotent
Leibniz algebra L, we find that s(L) = (n — 1)2 + 1 — dim(H Ly(L)) > 0. Furthermore, we
determine all finite dimensional nilpotent Leibniz algebras with s(L) less than or equal to
three.
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1 Introduction and preliminary results

Leibniz algebras were introduced by Loday in [12, 13] as a non-commutative generalization of
Lie algebras. A left (respectively, right) Leibniz algebra L is a vector space equipped with a
bilinear product [—, —] : L X L — L such that all left (respectively, right) product operators are
derivation. Of course, any Lie algebra is both left and right Leibniz algebra but the converse
does not hold in general case. It is convenient to show that for a Leibniz algebra L, the space
spanned by squares of elements, Leib(L) = span{[z,z]|z € L}, is an abelian ideal of L contained
in the left center of L and L is a Lie algebra if and only if Leib(L) = 0. In this paper, we employ
the notation of [8] and consider finite dimensional, left Leibniz algebras over an algebraically
closed field F of characteristic different than 2.

For a Leibniz algebra L, the Leibniz homology of L with trivial coefficients, denoted by

HL,(L), is the homology of the Loday complex <®n20 Lo, 8n), where the boundary map 0 is
given by

On(w1® @)= Y (Vo1 ® 2 1@, 000 Q80 @), (n>2)
1<i<j<n

and 0 (z1) = 0, for any x1,--- ,2, € L. Therefore, HLi(L) = L/L? HLo(L) = F and if L is
an abelian Lie algebra then HL, (L) = L®" for any n > 1.

Among all homology degrees of a Leibniz algebra, the second one is much more involved with
the structural properties of a Leibniz algebra such as capability or perfectness, see for instance
[2]. Also, there are several technical points of view and interpretations to the second homology
group of a Leibniz algebra that we mention the most important ones.

Let 0 = A - K — L — 0 be the maximal stem extension of the finite dimensional Leibniz
algebra L, i.e. an exact sequence such that A is a central ideal of K that contained in K2
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