

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Half-axes in power associative algebras

Yoav Segev

Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel

ARTICLE INFO

Article history: Received 17 August 2017 Available online 14 February 2018 Communicated by Louis Rowen

MSC: primary 17A05 secondary 17C99, 17B69

Keywords: Half-axis Power associative algebra Axial algebra Jordan algebra

ABSTRACT

Let A be a commutative, non-associative algebra over a field \mathbb{F} of characteristic $\neq 2$. A half-axis in A is an idempotent $e \in A$ such that e satisfies the Peirce multiplication rules in a Jordan algebra, and, in addition, the 1-eigenspace of ad_e (multiplication by e) is one dimensional. In this paper we consider the identities

(*) $x^2 x^2 = x^4$ and $x^3 x^2 = xx^4$.

We show that if identities (*) hold strictly in A, then one gets (very) interesting identities between elements in the eigenspaces of ad_e (note that if $|\mathbb{F}| > 3$ and the identities (*) hold in A, then they hold strictly in A). Furthermore we prove that if A is a primitive axial algebra of Jordan type half (i.e., A is generated by half-axes), and the identities (*) hold strictly in A, then A is a Jordan algebra.

@ 2018 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper \mathbb{F} is a field of characteristic not 2 and A is a commutative non-associative algebra over \mathbb{F} . Given an element $x \in A$ and a scalar $\lambda \in \mathbb{F}$, we denoted:

ALGEBRA

E-mail address: yoavs@math.bgu.ac.il.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.02.009} 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

$$A_{\lambda}(x) := \{ y \in A \mid yx = \lambda y \}.$$

(We allow $A_{\lambda}(x) = 0.$)

Definition 1.1. Let $e \in A$, and set $Z := A_0(e)$ and $U := A_{1/2}(e)$. We say that e is a *half-axis* if and only if

- (1) $e^2 = e$ (so e is an idempotent).
- (2) $A_1(e) = \mathbb{F}e.$
- (3) $A = \mathbb{F}e \oplus U \oplus Z$.
- (4) $Z^2 \subseteq Z, \ U^2 \subseteq \mathbb{F}e + Z \text{ and } UZ \subseteq U.$

Note that any idempotent e in a Jordan algebra J such that $J_1(e) = \mathbb{F}e$ is a half-axis. Recall that A is a *primitive axial algebra of Jordan type half* if A is generated (as an algebra over \mathbb{F}) by half-axes.

We also need the following notation.

Notation 1.2. Let $e \in A$ be a half-axis, and let $x \in A$. Write $x = \alpha e + x_0 + x_{1/2}$, with $\alpha \in \mathbb{F}$ and $x_\lambda \in A_\lambda(e)$, for $\lambda \in \{0, 1/2\}$.

(1) We denote $\varphi_e(x) = \delta_x := \alpha$.

(2) We denote $z_x := x_0$. We call z_x the Z-part of x.

Note that $ex = \delta_x e$, for $x \in A_1(e) + A_0(e)$.

Throughout this paper we shall use the technique of *linearization* of identities. More details about this technique are given in §2.

1.3. Scalar extension and strict validity of identities

For a field extension \mathbb{K}/\mathbb{F} , we denote by $A_{\mathbb{K}} := A \otimes_{\mathbb{F}} \mathbb{K}$ the scalar extension (or base change) of A from \mathbb{F} to \mathbb{K} , which is a commutative non-associative \mathbb{K} -algebra in a natural way. It is well known that Jordan algebras are invariant under base change (see e.g. [4, Linearization Proposition 1.8.5(2), p. 148]), so A is a Jordan algebra over \mathbb{F} if and only if $A_{\mathbb{K}}$ is one over \mathbb{K} . Moreover, since tensor products commute with direct sums, if $e \in A$ is a half-axis, then e is a half-axis in $A_{\mathbb{K}}$. Since primitive axial algebras of Jordan type half are *spanned* by half-axes (see [1, Corollary 1.2, p. 81]), it follows that primitive axial algebras are stable under base change as well. But power-associative algebras are not. For this reason, the concept of strict power-associativity comes in: A is called *strictly* power-associative if the scalar extensions $A_{\mathbb{K}}$ are power-associative, for all field extensions \mathbb{K}/\mathbb{F} . Similarly, an identity is said to hold strictly in A if it is satisfied not only by A but by all its scalar extensions. Download English Version:

https://daneshyari.com/en/article/8895847

Download Persian Version:

https://daneshyari.com/article/8895847

Daneshyari.com