Half-axes in power associative algebras

Yoav Segev
Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel

A R T I C L E I N F O

Article history:

Received 17 August 2017
Available online 14 February 2018
Communicated by Louis Rowen

MSC:

primary 17A05
secondary 17C99, 17B69

Keywords:
Half-axis
Power associative algebra
Axial algebra
Jordan algebra

A B S T R A C T

Let A be a commutative, non-associative algebra over a field \mathbb{F} of characteristic $\neq 2$. A half-axis in A is an idempotent $e \in A$ such that e satisfies the Peirce multiplication rules in a Jordan algebra, and, in addition, the 1-eigenspace of ad_{e} (multiplication by e) is one dimensional.
In this paper we consider the identities
(*) $\quad x^{2} x^{2}=x^{4}$ and $x^{3} x^{2}=x x^{4}$.
We show that if identities $(*)$ hold strictly in A, then one gets (very) interesting identities between elements in the eigenspaces of ad_{e} (note that if $|\mathbb{F}|>3$ and the identities $(*)$ hold in A, then they hold strictly in A). Furthermore we prove that if A is a primitive axial algebra of Jordan type half (i.e., A is generated by half-axes), and the identities (*) hold strictly in A, then A is a Jordan algebra.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper \mathbb{F} is a field of characteristic not 2 and A is a commutative non-associative algebra over \mathbb{F}. Given an element $x \in A$ and a scalar $\lambda \in \mathbb{F}$, we denoted:

[^0]$$
A_{\lambda}(x):=\{y \in A \mid y x=\lambda y\} .
$$
(We allow $A_{\lambda}(x)=0$.)

Definition 1.1. Let $e \in A$, and set $Z:=A_{0}(e)$ and $U:=A_{1 / 2}(e)$. We say that e is a half-axis if and only if
(1) $e^{2}=e$ (so e is an idempotent).
(2) $A_{1}(e)=\mathbb{F} e$.
(3) $A=\mathbb{F} e \oplus U \oplus Z$.
(4) $Z^{2} \subseteq Z, U^{2} \subseteq \mathbb{F} e+Z$ and $U Z \subseteq U$.

Note that any idempotent e in a Jordan algebra J such that $J_{1}(e)=\mathbb{F} e$ is a half-axis.
Recall that A is a primitive axial algebra of Jordan type half if A is generated (as an algebra over \mathbb{F}) by half-axes.

We also need the following notation.
Notation 1.2. Let $e \in A$ be a half-axis, and let $x \in A$. Write $x=\alpha e+x_{0}+x_{1 / 2}$, with $\alpha \in \mathbb{F}$ and $x_{\lambda} \in A_{\lambda}(e)$, for $\lambda \in\{0,1 / 2\}$.
(1) We denote $\varphi_{e}(x)=\delta_{x}:=\alpha$.
(2) We denote $z_{x}:=x_{0}$. We call z_{x} the Z-part of x.

Note that $e x=\delta_{x} e$, for $x \in A_{1}(e)+A_{0}(e)$.

Throughout this paper we shall use the technique of linearization of identities. More details about this technique are given in $\S 2$.

1.3. Scalar extension and strict validity of identities

For a field extension \mathbb{K} / \mathbb{F}, we denote by $A_{\mathbb{K}}:=A \otimes_{\mathbb{F}} \mathbb{K}$ the scalar extension (or base change) of A from \mathbb{F} to \mathbb{K}, which is a commutative non-associative \mathbb{K}-algebra in a natural way. It is well known that Jordan algebras are invariant under base change (see e.g. [4, Linearization Proposition $1.8 .5(2)$, p. 148]), so A is a Jordan algebra over \mathbb{F} if and only if $A_{\mathbb{K}}$ is one over \mathbb{K}. Moreover, since tensor products commute with direct sums, if $e \in A$ is a half-axis, then e is a half-axis in $A_{\mathbb{K}}$. Since primitive axial algebras of Jordan type half are spanned by half-axes (see [1, Corollary 1.2, p. 81]), it follows that primitive axial algebras are stable under base change as well. But power-associative algebras are not. For this reason, the concept of strict power-associativity comes in: A is called strictly power-associative if the scalar extensions $A_{\mathbb{K}}$ are power-associative, for all field extensions \mathbb{K} / \mathbb{F}. Similarly, an identity is said to hold strictly in A if it is satisfied not only by A but by all its scalar extensions.

https://daneshyari.com/en/article/8895847

Download Persian Version:

https://daneshyari.com/article/8895847

Daneshyari.com

[^0]: E-mail address: yoavs@math.bgu.ac.il.
 https://doi.org/10.1016/j.jalgebra.2018.02.009
 0021-8693/© 2018 Elsevier Inc. All rights reserved.

