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FINDING A CYCLE BASE OF A PERMUTATION GROUP

IN POLYNOMIAL TIME

MIKHAIL MUZYCHUK AND ILIA PONOMARENKO

Abstract. A cycle base of a permutation group is defined to be a maximal
set of its pairwise non-conjugate regular cyclic subgroups. It is proved in this
paper that a cycle base of a permutation group of degree n can be constructed
in polynomial time in n.

1. Introduction

It is well known that the graph isomorphism problem is polynomial-time equiva-
lent to finding the automorphism group of a graph. However, it is not clear whether
the automorphism group given as the input can help to test isomorphism. Our main
result says that it does help if the input graph (or any other combinatorial object,
see the definition below) is circulant. To be more precise, we need the concept of a
cycle base explained in the next paragraph.

Any permutation group K ≤ Sym(n) acts by conjugation on the set

cyc(K) = {G ≤ K : G is regular and cyclic}.
A cycle base of K is an arbitrary subset B ⊆ cyc(K) that intersects each K-orbit of
this action by exactly one element. In other words, B is a maximal set of pairwise
non-conjugate regular cyclic subgroups of K. Notice that a cycle base is empty if
K does not contain a full cycle.

The concept of a cycle base, in a slightly different form, was first used in [15]
for efficient recognition and isomorphism testing of circulant tournaments. Ten
years later a cycle base technique was successfully applied to construct efficient
algorithms for recognition and isomorphism testing of circulant graphs [3, 14]. In
particular, an efficient algorithm constructing a cycle base of the automorphism
group of a graph had been developed in [3].

Note that elementary counting arguments show that a size of any cycle base
of a permutation group K ≤ Sym(n) is bounded from above by n − 1. Using
the classification of finite simple groups, this bound was improved in [13] to ϕ(n),
where ϕ is the Euler function.

In what follows, under a combinatorial object, we mean any objectX of a concrete
category in the sense of [1]; it is called circulant if the group Aut(X) contains a
regular cyclic subgroup. The idea to use cycle bases for isomorphism testing of
circulant combinatorial objects goes back to Babai’s lemma [1, Lemma 3.1] which
established a correspondence between Cayley representations of a combinatorial
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