

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Varieties of elements of given order in simple algebraic groups

Claude Marion

Dipartimento di Matematica, Università degli Studi di Padova, Padova, Italy

ARTICLE INFO

Article history: Received 28 December 2016 Available online 8 May 2018 Communicated by Gunter Malle

Keywords:
Simple algebraic groups
Subvarieties of simple algebraic
groups
Elements of given order in simple
algebraic groups
Finite groups of Lie type
Finite simple images of triangle
groups

ABSTRACT

Given a positive integer u and a simple algebraic group G defined over an algebraically closed field K of characteristic p, we derive properties about the subvariety $G_{[u]}$ of G consisting of elements of G of order dividing u. In particular, we determine the dimension of $G_{[u]}$, completing results of Lawther [7] in the special case where G is of adjoint type. We also apply our results to the study of finite simple quotients of triangle groups, giving further insight on a conjecture we proposed in [10] as well as proving that some finite quasisimple groups are not quotients of certain triangle groups.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	25
2.	Preliminary results on centralizers	32
3.	Proofs of Propositions 2 and 3	.37
4.	Proof of Theorem 4 for G of exceptional type	39
5.	Some properties of $\operatorname{Spin}_n(K)$	43
6.	Upper bounds for $d_u(G)$ for G of classical type	46
	6.1. G is of type A_{ℓ}	47
	6.2. G is of type C_{ℓ}	49
	6.3. G is of type B_{ℓ}	51
	6.4. G is of type D_{ℓ}	60

E-mail address: marion@math.unipd.it.

7.	Proofs of Theorems 4 and 5	170
8.	Proof of Proposition 7	176
9.	Proof of Theorem 9	178
10.	Proof of Proposition 10	186
11.	Some tables	187
Refer	ences	191

1. Introduction

Let G be a reductive algebraic group defined over an algebraically closed field K of characteristic p (possibly equal to 0), C be a conjugacy class of G and u be a positive integer. In 2007 Guralnick [3] proved the following result:

Theorem 1 ([3, Theorem 1.1]). Given a reductive algebraic group G over an algebraically closed field, a conjugacy class C of G and a positive integer u, the set $\{g \in G : g^u \in C\}$ is a finite union of conjugacy classes of G.

In this paper, we concentrate our attention to the case where G is connected and $C = \{1\}$ is the trivial conjugacy class of G. For a positive integer u, we let

$$G_{[u]} = \{ g \in G : g^u = 1 \}$$

be the subvariety of G consisting of elements of G of order dividing u and set $j_u(G) = \dim G_{[u]}$. We also let $d_u(G)$ be the minimal dimension of a centralizer in G of an element of G of order dividing u. We are merely interested in determining $j_u(G)$ for every positive integer u (when G is a simple algebraic group).

For completeness, we begin by proving Guralnick's result in the case where G is connected and $C = \{1\}$. In the statement below, given $g \in G$, we let g^G denote the conjugacy class of g in G.

Proposition 2. Let G be a connected reductive algebraic group defined over an algebraically closed field K of characteristic p. Let u be a positive integer. Then the number of conjugacy classes of G of elements of order dividing u is finite. In particular $G_{[u]}$ is a finite union of conjugacy classes of G. Moreover $\dim G_{[u]} = \max_{g \in G_{[u]}} \dim g^G$ and codim $G_{[u]} = d_u(G)$.

Given a simple algebraic group G defined over an algebraically closed field K of characteristic p, we denote by $G_{s.c.}$ (respectively, $G_{a.}$) the simple algebraic group over K of simply connected (respectively, adjoint) type having the same Lie type and Lie rank as G. We prove the following result partially proved in [7, Theorem 3.11]:

Download English Version:

https://daneshyari.com/en/article/8895885

Download Persian Version:

https://daneshyari.com/article/8895885

Daneshyari.com