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1. Introduction

Let g be a prime power and r,n € N. Let V' be a vector space of dimension 7 over Fyx.
For any k-dimensional F -vector subspace U of V, the set L(U) defined by the nonzero
vectors of U is called an Fy-linear set of A = PG(V, ¢") of rank k, i.e.

L{U) = {{u)p,. :ueU\{0}}.

It is notable that the same linear set can be defined by different vector subspaces. Con-
sequently, we always consider a linear set and the vector subspace defining it in pair.

Let Q = PG(W,Fyn) be a subspace of A and L(U) an F4-linear set of A. We say that
Q has weight i in L(U) if dimg, (W NU) = i. Thus a point of A belongs to L(U) if and
only if it has weight at least 1. Moreover, for any Fy-linear set L(U) of rank k,
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When the equality holds, i.e. all the points of L(U) have weight 1, we say L(U) is
scattered. A scattered F4-linear set of highest possible rank is called a mazimum scattered
[F4-linear set. See [3] for the possible ranks of maximum scattered linear sets.

Maximum scattered linear sets have various applications in Galois geometry, including
blocking sets [1,33,35], two-intersection sets [3,4], finite semifields [5,17,34,39], translation
caps [2], translation hyperovals [16], etc. For more applications and related topics, see
[43] and the references therein. For recent surveys on linear sets and particularly on the
theory of scattered spaces, see [30,31].

In this paper, we are interested in maximum scattered linear sets in PG(1,¢"). Let f
be an Fg-linear function over F;» and

U={(z, f(z)): z €Fgn}. (1)

Clearly U is an n-dimensional IF,-subspace of Fy» and f can be written as a g-polynomial
f(X) =Y a; X7 € Fyu[X]. It is not difficult to show that a necessary and sufficient
condition for L(U) to define a maximum scattered linear set in PG(1, ¢") is

F@) W) i and onty it Y e F,, for z,y € Fi,. 2)
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In [47], such a g-polynomial is called a scattered polynomial.

Two linear sets L(U) and L(U’) in PG(2, ¢"™) are equivalent if there exists an element
of PT'L(2, ¢") mapping L(U) to L(U’). It is obvious that if U and U’ are equivalent as
F,n-spaces, then L(U) and L(U’) are equivalent. However, the converse is not true in
general. For recent results on the equivalence and classification of linear sets, we refer to
[10,12,13).
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