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) ) For the first algebra the question whether a given element is
Communicated by Louis Rowen

nilpotent is algorithmically unsolvable, for the second one the
question whether a given element is a zero divisor is algorith-
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1. Introduction

The word equality problem in finitely presented semigroups (and in algebras) cannot
be algorithmically solved. This was proved in 1947 by Markov ([13]) and independently
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by Post ([17]). In 1952 Novikov constructed the first example of the group with unsolvable
problem of word equality (see [15] and [16]).

In 1962 Shirshov proved solvability of the equality problem for Lie algebras with one
relation and raised a question about finitely defined Lie algebras (see [22]).

In 1972 Bokut settled this problem. In particular, he showed the existence of a finitely
defined Lie algebra over an arbitrary field with algorithmically unsolvable identity prob-
lem ([2]).

A detailed overview of algorithmically unsolvable problems can be found in [4].

Otherwise, some problems become decidable if a finite Grobner basis defines a relations
ideal. In this case it is easy to determine whether two elements of the algebra are equal
or not (see [1]).

Grobner bases for various structures are investigated by the Bokut school in
Guangzhou ([3]).

In his work, Piontkovsky extended the concept of obstruction, introduced by Latyshev
(see [18], [19], [20], [21]).

Latyshev raised the question concerning the existence of an algorithm that can find
out if a given element is either a zero divisor or a nilpotent element when the ideal of
relations in the algebra is defined by a finite Grébner basis.

Similar questions for monomial automaton algebras can be solved. In this case the
existence of an algorithm for nilpotent element or a zero divisor was proved by Kanel-
Belov, Borisenko and Latyshev [11]. Note that these algebras are not Noetherian and
not weak Noetherian. Iyudu showed that the element property of being one-sided zero
divisor is recognizable in the class of algebras with a one-sided limited processing (see
[6], [7]). Tt also follows from a solvability of a linear recurrence relations system on a tree
(see [9)).

Algorithmic questions in algebras with finite Grobuner basis are considered in [5].

An example of an algebra with a finite Grébner basis and algorithmically unsolvable
problem of zero divisor is constructed in [8]. However one should consider there a semi-
DEGLEX order, where the letter ¢ has weight 16, and all other letters have weight 1.
This is a reduction order, and relations (01)—(25) in [8, Proposition 3.5] form a finite
Grobner basis, where left-hand sides are larger than right-hand sides.

A notion of Grobner basis (better to say Grobner—Shirshov basis) first appeared in
the context of noncommutative (and not Noetherian) algebra. Note also that Poincaré—
Birkhoff-Witt theorem can be canonically proved using Grobner bases. For more detailed
discussions of these questions see in [2], [23], [10], [11], [12].

In the present paper we construct an algebra with a finite Grébner basis and algo-
rithmically unsolvable problem of nilpotency. We also provide a shorter construction for
the zero divisors question.

For these constructions we simulate a universal Turing machine, each step of which
corresponds to a multiplication from the left by a chosen letter.

Thus, to determine whether an element is a zero divisor or is a nilpotent, it is not
enough for an algebra to have a finite Grobner basis.
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